
A Preview of C# 7 // eMag Issue 45 - Oct 2016 1

eMag Issue 45 - Oct 2016

PRESENTATION

C# Today and
Tomorrow

ARTICLE

Tuples and
Anonymous Structs

ARTICLE
C# 7 Features
Previewed

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

A Preview of C# 7

FOLLOW US CONTACT US

C# 7 Features Previewed
Over the last year we've shown you various
features that were being considered for C#
7. With the 4th preview of Visual Studio 15,
Microsoft has decided to demonstrate the
features it has planned for the final release of
C# 7.

C# Today and Tomorrow
Mads Torgersen talks about how C# is evolving, how the teams work in the open
source space, and some of the future features and changes to the language (C# 7).

Advanced Pattern-Matching
Features Removed from C# 7
Advanced pattern matching features that were
originally expected to be present in C# 7 have been
recently excluded from the future branch and will
not make it into the next version of the language.

Managed Pointers
A big emphasis for many developers,
especially those writing games or work-
ing on pure number crunching, is raw
performance. One way to get more per-
formance out of C# is to avoid allocating
memory without having to copy structs
instead. The next proposal shows how
C# can expose the CLR managed pointer
support to do just that.

Patterns and
Practices in C# 7
Preview
C# 7 is going to be a major update
with a lot of interesting new capabil-
ities. Using the principles found in
the .NET Framework Design Guide-
lines, we’re going to take a first pass
at laying down strategies for getting
the most from these new features.

Tuples and Anonymous
Structs
The plans for C# 7 are being constantly reviewed
by Microsoft, even as it nears completion. In this
article, we’ll be looking at some of the proposals
starting with language support for tuples-- a data
structure popular many other languages.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

http://bit.ly/2bi5x4E

A Preview of C# 7 // eMag Issue 45 - Oct 20164

A LETTER FROM
THE EDITOR

Microsoft first released the C# programming language
to the public in 2000 and since has carefully expand-
ed the capabilities that C# offers in a measured way.
The language has evolved through six releases to add
everything from generics to lambda expressions to
asynchronous methods and string interpolation.

As a C# developer, it is important to stay informed of
the language’s evolution. Understanding how and
why the new language features are used is important
whether you plan to incorporate them in your own
projects or just read through the code of others.

In this eMag, we have curated a collection of new
and previously published content that provides the
reader with a solid introduction to C# 7 as it is defined
today. We will start with “C# Today and Tomorrow”, an
informative look at the current plans for C# 7 accord-
ing to Mads Torgersen. As the C# language project
manager at Microsoft, Torgersen is the best possible
guide to provide us with an informative look at C#’s
design process.

Next, InfoQ’s Jonathan Allen previews just what C# 7
is expected to include with his code-based article, “C#
7 Features Previewed”. Allen continues with a more
detailed look at tuples in “Tuples and Anonymous
Structs” and moves on to “Managed Pointers”.

The exact list of features for C# 7 is constantly evolv-
ing, and Sergio De Simone looks at the fate of ad-
vanced pattern matching in C# 7 in a short summary.

We complete this collection with Jonathan Allen's
strategies for getting the most from these new fea-
tures using the principles found in the .NET Frame-
work Design Guidelines.

As De Simone’s article reminds us, C# 7 is still in a
pre-release state and what the final release will pro-
vide is still very much in flux. It is important to stay
familiar with the current proposals so you know what
to expect in the final release, and this eMag is one
way to begin your journey.

has an established career in the
financial sector but follows the latest
trends in the computer industry. He

received his MBA from the University of Michigan and
in his spare time enjoys traveling with his wife, reading,
and programming. He just finished writing his first
book, Visual Studio 2015 Cookbook, Second Edition.
You can follow Jeff on Twitter @jeffemartin or on InfoQ.

 JEFF
MARTIN

http://www.infoq.com/author/Victor-Grazi

A Preview of C# 7 // eMag Issue 45 - Oct 2016 5

C# Today and Tomorrow

Watch online on InfoQ

So how do you evolve a lan-
guage? Once you have a bunch
of users out there, how do you
think about what to do next with
the language? On the one hand,
at least when you have such a
compatibility commitment that
Microsoft does with C#, you
have to balance between staying
somewhat simple and improving
aggressively so that you stay rel-
evant to the evolving tasks of the
world.

There’s definitely some kind of a
complexity-budget thinking that
you have to do. It is important

to pick the right things to mas-
sively improve for as little cost as
possible in terms of giving away
simplicity. Another consideration
is that you want to make things
better for the developers you al-
ready have versus becoming at-
tractive to new developers who
might be interested in C# while
focused on a different language.
The present management of C#
is a balance between trying to
capture interest from new us-
ers that fit new scenarios versus
just bringing along the existing,
trusted developer base.

Finally, how do you deal with
new paradigms? In a certain
sense, history is on the side of
functional programming. C# is
not a functional programming
language but maybe it can be-
come enough of one to work in
those scenarios where functional
programming is the optimal ap-
proach.

We have to stay true to the feel
of C#. C# still has to be C# as it
evolves. One of Torgersen’s guid-
ing themes is the idea that there
should only be one code case
needed to understand C#.

Developing a popular language is a complex undertaking. In the
beginning, it is important to attract users with new features or a new
way of thinking to make their work easier. Once the user base grows,
though, the challenge becomes how to maintain it in such a manner
to attract new users while not alienating the existing users that fueled
its start. C# program manager Mads Torgersen recently presented his
thoughts on this process at QCon, providing valuable insight into his
thought process and future plans for C#.

By Jeff Martin

https://www.infoq.com/presentations/chsarp-future

A Preview of C# 7 // eMag Issue 45 - Oct 20166

Beyond the design and growth
of the language is its place in the
larger ecosystem. C#, and the .NET
platform it’s built on, originally
targeted the traditional Win32 en-
vironment. Today, C# can run any-
where from desktops to servers to
mobile devices. The arrival of .NET
Core means that the C# being writ-
ten today can just as easily run on
Linux or Mac OS X as it can on Win-
dows.

Since C# 7 will be released with
Visual Studio “15” (the successor
to Visual Studio 2015), Microsoft is
developing it with a faster release
cycle in mind. Torgersen notes that
this means not everything original-
ly planned will be included with C#
7; some of that will come later in C#
8.

Looking at the new
language constructs
The first big new item Torgersen
presented is tuples. Tuples are a
useful feature for multiple return

values, but they’re also just as good
for sticking multiple things in a
data structure or to provide multi-
ple values in a dictionary:

001 public static void
tupelDemo()

002 {
003 var point =

(x: 0, y: 0);
004 point =

(point.x + 1, point.y
+ 3);

005
WriteLine(“My tuple: “
+ point);

006 }

When that method is called, it pro-
duces the following output:

001 My tuple: (1, 3)

Torgersen anticipates that some
developers may have concerns
regarding performance. Some de-
velopers may ask if this is going
to allocate a new tuple every time
around and wonder if this and that
are going to be expensive. Fortu-
nately, you don’t have to worry
because it won’t be expensive —
the tuples are struck in C#. They’re
not actually allocated every time
around and are value types. When
you pass them around, they get
copied. They’re not allocated on
the heap. So it’s completely free to

Figure 1: Balancing C#'s evolution.

Figure 2: One code base for all.

InfoQ recommends

The InfoQ Podcast
Mads Torgersen on C# 7 and Beyond

QCon chair Wesley Reisz talks to
Mads Torgersen who leads the
C# language design process at
Microsoft, where he has been
involved in five versions of C#, and
also contributed to TypeScript,
Visual Basic, Roslyn and LINQ.

https://www.infoq.com/articles/podcast-mads-torgersen

A Preview of C# 7 // eMag Issue 45 - Oct 2016 7

do this. This is as efficient as if we had multiple return
values directly in the language just like you have mul-
tiple parameters. It’s the same thing, like all values get
passed on the stack.

Pattern matching is another big feature that is coming
with C# 7. While the original feature set has been par-
tially scaled back, much still remains for developers to
take advantage of. What is a pattern? A pattern is sort
of a declarative way to specify both a test over a given
value and to extract information from it if the test is
true. You can simultaneously ask questions about the
value and get some extra information now.

Support of pattern matching allows developers to put
a pattern in case clauses. The following code excerpt
demonstrates this:

Beyond C# 7
Looking ahead of C# 7, Torgersen described how the
team really wishes C# had started out by distinguish-
ing nullable and non-nullable reference types. A lan-
guage like F# can do this but in C#, all reference types
can be null, and these null reference exceptions can
show up everywhere.

By introducing new syntax, a developer can indicate
when something will be specifically null or not null.
If a follow-up operation is being performed on a nul-
lable reference type, the compiler can then object and

complain to the user. The following excerpt illustrates
these ideas:

Conclusion
Current plans call for C# 7 to include the following fea-
tures:
• binary literals,
• digit separators,
• tuples,
• pattern matching (partially deferred?),
• local functions, and
• ref returns and locals.

Torgersen has already illustrated a few, as shown in
this article, but we will review them all in greater detail
throughout the rest of this eMag.

001 foreach (var v in values)
002 {
003 // pattern matching with int and

object
004 switch (v)
005 {
006 // pattern matching: based on integer
007 case int i:
008 r = (r.s +

i, r.c + 1);
009 break;
010 // pattern matching: based on object
011 case object[]

l:
012 var n =

Tally(l);
013 r = (r.s +

n.sum, r.c + n.count);
014 break;
015 }
016 }

A Preview of C# 7 // eMag Issue 45 - Oct 20168

C# 7 Features Previewed

Read online on InfoQ

Tuple value types
.NET has a tuple type, but in the context of C#,
there are a lot of problems. Because it’s a reference
type, you probably want to avoid using it in perfor-
mance-sensitive code, as you’d have to pay a cost for
garbage collection. And as the tuples are immutable,
making them safer for sharing across threads, any
change requires allocating a new object.

C# 7 will address this by offering a tuple as a value
type. This will be a mutable type, making it more ef-
ficient when performance is essential. And as a value
type, it makes a copy on assignment so there is little
risk of threading issues.

To create a tuple, you can use this syntax:

001 var result = (5, 20);

Optionally, you can name the values. This isn’t neces-
sary; it just makes the code more readable.

001 var result = (count: 5, sum: 20);

You may be thinking, “Great, but I could have written
that myself.” But the next bit of news is where this
really matters.

Jonathan Allen got his start working on MIS projects for a health clinic in the late 90’s, bringing
them up from Access and Excel to an enterprise solution by degrees. After spending five years
writing automated trading systems for the financial sector he has decided to shift into high
end user interface development. In his free time he enjoys studying and writing about western
martial arts from the 15th thru 17th century.

Over the last year, we’ve seen various features that were being
considered for C# 7. With the preview of Visual Studio 15, Microsoft
has decided to demonstrate the features that will make it into the
language’s final release.

https://www.infoq.com/news/2016/04/CSharp-7
https://msdn.microsoft.com/en-us/library/system.tuple
http://www.infoq.com/csharp-7/
http://www.infoq.com/csharp-7/

A Preview of C# 7 // eMag Issue 45 - Oct 2016 9

Multi-value returns
Returning two values from one function has always
been a pain in C-style languages. You have to either
wrap the results in some sort of structure or use out-
put parameters. Like many functional languages, C#
7 will do the first option for you:

001 (int, int) Tally (IEnumerable<int>
list)

Here we see the basic problem with generic tuples:
there is no way to know what each field is for. So C#
is offering a compiler trick that lets you name the re-
sults:

001 (int Count, int Sum) Tally
(IEnumerable<int> list)

Note that C# isn’t generating a new anonymous type.
You are still getting back a tuple, but the compiler is
pretending its properties are Count and Sum instead
of Item1 and Item2. Thus, these lines of code are
equivalent:

001 var result = Tally(list);
002 Console.WriteLine(result.Item1);
003 Console.WriteLine(result.Count);

Tuples may be deconstructed (also called multi-as-
signment) from a single tuple into distinct variables.
When performing deconstruction, you may do so

into existing or freshly declared variables. The fol-
lowing code fragment demonstrates some of the
possibilities with tuples:

001 static void Main(string[] args)
002 {
003 Console.

WriteLine(“Tuples”);
004 var result = (count: 5,

sum: 20);
005 // var result = (5, 20);

alternate way to declare a tuple
006
007 Console.

WriteLine(result); //
prints (5, 20)

008 Console.WriteLine(result.
count); // prints 5

009 Console.WriteLine(result.
sum); // prints 20

010
011 // deconstruction into

existing variables
012 int count2, sum2;
013 (count2, sum2) = result;
014 // deconstruction into

new variables
015 var (count3, sum3) =

result;
016 }

Adding Tuple Support to Visual Studio 15 Preview 4
In order to experiment with tuples in your code, you will need to add the System.ValueTuple NuGet package
to your solution. Open the NuGet package manager for your C# solution. Then, ensure nuget.org is the package
source, search for System.ValueTuple with Include prerelease checked as shown in the following screenshot:

A Preview of C# 7 // eMag Issue 45 - Oct 201610

Beyond simple utility functions, multi-value returns
will be useful for writing asynchronous code, as async
functions aren’t allowed to use out parameters.

Pattern Matching: Decomposition
So far, we’ve seen just an incremental improvement
over what is available in VB. The real power of pattern
matching comes from decomposition, when you can
tear apart an object. Consider this syntax:

001 if (person is Professor {Subject is
var s, FirstName is “Scott”})

This does two things:

1. It creates a local variable named s with the
value of ((Professor)person).Subject.

2. It performs the equality check ((Professor)
person).FirstName == “Scott”.

Translated into C# 6 code, this is:

001 var temp = person as Professor;
002 if (temp != null && temp.FirstName ==

“Scott”)
003 {
004 var s = temp.Subject

Presumably, we’ll be able to combine enhanced
switch blocks in the final release.

Ref returns
Passing large structures by reference can be signifi-
cantly faster than passing them by value, as the lat-
ter requires copying the whole structure. Likewise,
returning a large structure by reference can be faster.

In languages such as C, you return a structure by
reference using a pointer. This brings in the usual
problems with pointers such as pointing to a piece
of memory after it has been recycled for another pur-
pose.

C# avoids this problem by using a reference, which is
essentially a pointer with rules. The most important
rule is that you can’t return a reference to a local vari-
able. If you’d try to do that, that variable would be on
a portion of the stack that is no longer valid as soon
as the function returns.

In a demonstration, C# instead returned a reference
to a structure inside an array. Since it is effectively a
pointer to an element in the array, the array itself can
be modified. For example:

001 var x = ref FirstElement(myArray)
002 x = 5; //MyArray[0] now equals 5

The use case for this is highly performance-sensitive
code. You wouldn’t use it in most applications.

Binary literals
A minor addition is binary literals. The syntax is a
simple prefix: for example, “5” would be “0b0101”.
The main use cases for this would be setting up flag-
based enumerations and creating bitmasks for work-
ing with C-style interop.

var binary = 0b1010_1111_0000;

Digit Separators
Similar to binary literals is the addition of digit sepa-
rators, which improve readability of number literals.
Examples:

var hex = 0xFE_CD_BA;
var longNumber = 1_000_000_000;

Local functions
Local functions are functions that you define inside
another function. At first glance, local functions look
like slightly nicer syntax for anonymous functions.
But they have some advantages:

• They don’t require you to allocate a delegate to
hold them. Not only does this reduce memory
pressure, it also allows the compiler to inline the
function.

• They don’t require you to allocate an object when
creating a closure. Instead, it only has access to
the local variables. Again, this improves perfor-
mance by reducing garbage-collection pressure.

Presumably, the second rule means that you can’t
create a delegate that points to a local function. Still,
this offers organizational benefits over creating sep-
arate private functions to which you pass the current
function’s state as explicit parameters.

Partial class enhancements
The final feature demonstrated was a new way to
handle partial classes. In the past, partial classes
were based around the concept of generating code
first. The generated code would include a set of par-
tial methods that the developer could implement as
needed to refine behavior.

11

With the new replace syntax, you can go the other
way. The developer writes code in a straightforward
fashion first and then the code generator comes in
and rewrites it. Here is a simple example of what the
developer may write:

001 public string FirstName {get; set;}

That’s simple, clean, and completely wrong for a
XAML-style application. Here’s what the code gener-
ator will produce:

001 private string m_FirstName;
002 static readonly

PropertyChangedEventArgs s_
FirstName_EventArgs =new

003 PropertyChangedEventArgs(“FirstName”)
004 replace public string FirstName {
005 get {
006 return m_FirstName;
007 }
008 set {
009 if (m_FirstName == value)
010 return;
011 m_FirstName = value;
012 PropertyChanged?.Invoke(this, m_

FirstName_EventArg);
013 }

By using the replace keyword, the generated code
can literally replace the handwritten code with the
missing functionality. In this example, we can even
handle the tedious parts that developers often skip,
such as caching EventArgs objects.

While the canonical example is property change no-
tifications, this technique could be used for many as-
pect-oriented programming scenarios such as inject-
ing logging, security checks, parameter validation,
and other tedious boilerplate code.

To see these features in action, watch the Channel 9
video titled “The Future of C#” and the article Whats
new in C# 7 (https://blogs.msdn.microsoft.com/dot-
net/2016/08/24/whats-new-in-csharp-7-0/).

https://channel9.msdn.com/Events/Build/2016/B889
https://blogs.msdn.microsoft.com/dotnet/2016/08/24/whats-new-in-csharp-7-0/
https://blogs.msdn.microsoft.com/dotnet/2016/08/24/whats-new-in-csharp-7-0/
http://bit.ly/2bC8jfT

A Preview of C# 7 // eMag Issue 45 - Oct 201612

Tuples and Anonymous Structs

Read online on InfoQ

The purpose of a tuple is to create a lightweight way
to return multiple values from a function. Good tu-
ple support eliminates the need for out parameters,
which are usually considered to be cumbersome.
Moreover, out parameters are incompatible with
async/await, making them useless in many scenar-
ios.

What about the Tuple class?
The .NET framework has a Tuple class since version
4 but most developers consider it useful only under
limited circumstances. First of all, because Tuple is
a class, memory has to be allocated to use it, which
increases memory pressure and makes garbage-col-
lection cycles more frequent. For it to compete with
out parameters in terms of performance, it needs to
be a structure.

The second issue involves API design. A return type
of Tuple<int, int> doesn’t really tell you anything.
Every use of the function would require checking

the documentation twice, once when writing it and
again during code review. It would be far more use-
ful if the return type were something like Tuple<int
count, int sum>.

Anonymous structs
Consider these lines:

001 public (int sum, int count)
Tally(IEnumerable<int> values) {
... }

002 var t = new (int sum, int count) {
sum = 0, count = 0 };

Under the proposal, either line would define a new
anonymous value type with sum and count proper-
ties. Note that unlike an anonymous class, the anon-
ymous struct requires you to explicitly list the prop-
erty names and types.

With C# 6 nearing completion, Microsoft is already planning for C#
7. While nothing is definite yet, the company is starting to categorize
proposals in terms of interest and plausibility. Let’s look at one of the
proposals, language support for tuples.

By Jonathan Allen

https://www.infoq.com/news/2015/04/CSharp-7-Tuples
https://github.com/dotnet/roslyn/issues/347
https://www.infoq.com/author/Jonathan-Allen

A Preview of C# 7 // eMag Issue 45 - Oct 2016 13

A benefit of using structs is that they define Equals
and GetHashCode automatically — though you
could argue that the default implementation isn’t
very efficient and the compiler should provide one
instead.

Unpacking tuples
An important part of the tuple proposal is the ability
to unpack tuples with a single line of code. Consider
this block of code:

001 var t = Tally(myValues);
002 var sum = t.Sum;
003 var count = t.Count;

With unpacking, this simply becomes:

001 (var sum, var count) =
Tally(myValues);

Not yet decided is whether or not you will be able
to unpack a tuple without declaring new variables:
in other words, omit var and use a pre-existing local
variable instead.

Returning tuples
There are two proposals being considered for how
tuples would be returned from a function. The first is
fairly easy to understand:

001 return (a, b);

The second option has no return statement at all.
Consider this example,

001 public (int sum, int count)
Tally(IEnumerable<int> values)

002 {
003 sum = 0; count = 0;
004 foreach (var value in values) {

sum += value; count++; }
005 }

Implicitly created local/return variables aren’t a new
concept. Visual Basic was originally designed that
way, though it became unpopular once VB 7 intro-
duced the return statement. It also mirrors what you
would write if you were using out parameters. Still,
not seeing a return statement would be somewhat
disconcerting to many developers.

Other issues
Tuple support is a complex topic. While this article
covers the day-to-day aspects, many details will have
to be resolved from the compiler-writer and ad-
vanced-user perspectives.

Should tuples be mutable? This could be useful from
a performance or convenience standpoint, but may
make the code more error prone, especially when
dealing with multithreading.

Should tuples be unified across assemblies? Anony-
mous types are not unified, but unlike anonymous
types, these will be exposed as part of an API.

Can tuples be converted into other tuples? Superfi-
cially, they could, if they have the same type struc-
ture but different property names. Or the same prop-
erty names, but wider property types.

If you pass a tuple of two values to a function that
takes two parameters, will the tuple be automatically
unpacked (splatted)? Conversely, can you “unsplat” a
pair of arguments into one tuple parameter?

Much remains to be fleshed out.

http://bit.ly/2c9YNpA

A Preview of C# 7 // eMag Issue 45 - Oct 201614

Managed Pointers

Read online on InfoQ

Heap allocated memory can also
cause problems for the cache.
If you have a list or array of ref-
erence types, the actual data is
stored separately from the array,
which means you may have to
waste separate cache lines for
the array and the objects refer-
enced by the array. And if those
objects were created at the same
time, they may be scattered
widely enough to need even
more cache lines. This scattering
of related data is known as poor
locality.

Using value types (“structs” in C#
parlance) can dramatically re-
duce the number of allocations
and improve locality. However,
there are limits to what you can

reasonably do with structures.
Because structs are designed to
copy on assignment, you have to
keep them small or risk a serious
performance penalty that ne-
gates the reason for using them
in the first place.

One way to reduce unnecessary
copying is by passing value types
to functions using a managed
pointer. Currently, the only way
to create a managed pointer in
C# is by using a ref keyword as
part of a parameter. While this
addresses some performance
scenarios, the CLR is capable of
doing a lot more with managed
pointers.

The “Ref Returns and Locals” pro-
posal opens up two more op-
tions to C# programmers.

Ref local
Assuming that a is a local vari-
able of type int, the proposal
would allow you to create a ref
local with this syntax:

001 ref int x = a;

Like a ref parameter, the ref lo-
cal effectively becomes an alias
for the indicated local variable,
eliminating the need to make a
copy. You can also use it to get a
pointer to an array element or a
field in another object.

A big emphasis for many developers, especially those writing games
or working on pure number crunching, is raw performance. For them,
nothing is more problematic than memory allocation. While allocation
itself is cheap, too many allocations add to memory pressure and cause
more frequent garbage collection cycles.

By Jonathan Allen

https://www.infoq.com/news/2015/04/CSharp-7-Pointers
https://github.com/dotnet/roslyn/issues/118
https://www.infoq.com/author/Jonathan-Allen

A Preview of C# 7 // eMag Issue 45 - Oct 2016 15

001 ref int y = b[2];
002 ref int z = c.d;

In CLR terms, a ref local is called a “TypedRefer-
ence”. A TypedReference contains both the point-
er to a location and information on what type of
data may be stored at the location.

As a rule, a TypedReference is always a parame-
ter or local variable. This is necessary because the
CLR does not allow items on the heap to point in-
side other items on the heap. Nor may you return
a TypedReference, as that would make it possible
to return a reference to a local value that would
of course no longer exist once the function exits.

Ref return
The second part of the proposal would allow you
to return references from a function. This would
allow for scenarios such as this:

001 public static ref TValue
Choose<TValue>(

002 Func<bool> condition, ref
TValue left, ref TValue right)

003 {
004 return condition() ? ref left

: ref right;
005 }
006 Matrix3D left = […], right = […];
007 Choose(chooser, ref left, ref

right).M20 = 1.0;

With this new syntax, there are no copies made
to the struct anywhere in the sample. Instead, it
is always creating and passing managed pointers
around.

Unlike ref local, implementing this feature may
require altering the CLR standard. As mentioned
before, returning a TypedReference is normal-
ly not allowed. Technically speaking, you can do
it — but it is considered to be not type-safe and
thus “unverifiable”. Using unverified code is not
allowed in restricted security settings as it intro-
duces the risk for serious bugs that are normally
seen only in C/C++.

To mitigate this risk, the proposal states that you
can only return a reference to something on the
heap or an already existing ref/out parameter. Or
in other words, the compiler would verify that you
couldn’t possibly return a reference to local vari-
able.

 Managed pointers can
be used to avoid copying
and the performance
impact that entails.

A Preview of C# 7 // eMag Issue 45 - Oct 201616

Advanced Pattern-Matching Features
Removed from C# 7

Read online on InfoQ

The change of scope for C# 7 pat-
tern matching has already mate-
rialized in Roslyn’s GitHub repo.
In particular, issue #10866 (“Split
the features/patterns branch into
two branches for subfeatures
in/out C# 7”) and pull request
#10888 (“Remove evidence of
advanced pattern-matching fea-
tures for C# 7”) thoroughly de-
scribe what this change is about.

As InfoQ reported in April 2016,
pattern matching was going to
be one the most appealing new

features in C# 7, especially for
programmers coming from a
F# or Haskell background. Spe-
cifically, new pattern-matching
features were expected to en-
hance case blocks by allowing
for switching based on the type
or range of a variable (e.g. case
int x: or case int x when
x > 0) and to add support for
destructuring, which would al-
low developers to kind of tear
apart an object into some of its
components when it met given
conditions while also creating

local variables to refer to those
components. An example of
this is provided by the syntax if
(person is Professor {Sub-
ject is var s, FirstName is
“Scott”}).

Now, according to Roslyn issue
#10866, both the syntaxes “ex-
pression is Type identi-
fier” and “case Pattern when
expression” for a few basic
pattern forms have been moved
to the future branch for inclu-
sion in C# 7. The remaining fea-

Sergio de Simone is a software engineer. Sergio has been working as a software engineer for
over fifteen years across a range of different projects and companies, including such different
work environments as Siemens, HP, and small startups. For the last few years, his focus has been
on development for mobile platforms and related technologies. He is currently working for
BigML, Inc., where he leads iOS and OS X development.

Advanced pattern-matching features that were originally expected
to be present in C# 7 excluded in spring 2016 from the future branch
and will not make it into the next version of the language.

https://www.infoq.com/news/2016/05/csharp7-pattern-matching-removed
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn/issues/10866
https://github.com/dotnet/roslyn/issues/10888
https://github.com/dotnet/roslyn/issues/10888
http://www.infoq.com/news/2016/04/CSharp-7

A Preview of C# 7 // eMag Issue 45 - Oct 2016 17

tures have been left in the patterns/fea-
tures branch, which hosts features “that
might be delivered in a later release”.

This means that the more advanced kinds
of pattern matching, explained effective-
ly by Reddit poster wreckedadvent, will
not be available in C# 7, including:

• recursive pattern forms such as
positional patterns (e.g., p is Per-
son(“Mickey”, *), property patterns
(e.g., p is Person {FirstName is
“Mickey”}), tuple patterns, wildcard
*, etc.;

• the let keyword, supplying im-
mutable vars (e.g., let x = e2 when
e2 else stmt;), as opposed to mu-
table var;

• pattern matching based on us-
er-defined code such as a user-de-
fined is operator; and

• the match expression that would al-
low you to write:

001 var result = ...
002 let message = result

match (
003 case Success<string>

success: success.Result
004 case Failure err:

err.Message
005 case *: “Unknown!”
006);

There have been a few reactions within the
community of C# developers. Those more
keen on functional programming have ex-
pressed their disappointment about the
lack of a feature that would have made C#
more functional. Other developers, how-
ever, seem unconcerned or are glad that
C# evolution is being managed in a disci-
plined and controlled way.

 Pattern matching has
great appeal, but its
removal demonstrates
C# 7's constant
evolution.

http://www.reddit.com/r/csharp/comments/4ctoy7/exploring_pattern_matching_in_c/
http://www.reddit.com/r/csharp/comments/4ctoy7/exploring_pattern_matching_in_c/
https://www.reddit.com/r/csharp/comments/4hh6sj/pattern_matching_features_severely_cut_for_c7/
http://bit.ly/2c9YNpA

A Preview of C# 7 // eMag Issue 45 - Oct 201618

Patterns and Practices in C# 7 Preview

Tuple Returns
In normal C# programming, returning multiple val-
ues from one function can be quite tedious. Output
parameters are an option, but only if you are expos-
ing an asynchronous method. Tuple<T> is verbose,
allocates memory, and doesn’t have descriptive
names for its fields. Custom structs are faster than
Tuples, but litter the code with lots of single-use
types. And finally, anonymous types combined with
dynamic are very slow and lack static type checks.

All of these problems are solved with C#’s new tuple
return syntax. Here is an example of the basic syntax:

001 public (string, string)
LookupName(long id) // tuple return
type

002 {
003 return (“John”, “Doe”); // tuple

literal
004 }
005 var names = LookupName(0);
006 var firstName = names.Item1;
007 var lastName = names.Item2;

Jonathan Allen got his start working on MIS projects for a health clinic in the late 90's, bringing
them up from Access and Excel to an enterprise solution by degrees. After spending five years
writing automated trading systems for the financial sector, he became a consultant on a variety
of projects including the UI for a robotic warehouse, the middle tier for cancer research software,
and the big data needs of a major real estate insurance company. In his free time he enjoys
studying and writing about martial arts from the 16th century.

C# 7 is going to be a major update with a lot of interesting new
capabilities. And while there are plenty of articles on what you can do
with it, there’s not quite as many on what you should do with it. Using
the principles found in the .NET Framework Design Guidelines, we’re
going to take a first pass at laying down strategies for getting the most
from these new features.

A Preview of C# 7 // eMag Issue 45 - Oct 2016 19

The actual return type of this function is ValueTu-
ple<string, string>. As the name suggests, this
is a lightweight struct resembling the Tuple<T>
class. This solves the type bloat issue, but leaves us
with the same lack of descriptive names Tuple<T>
suffers from.

001 public (string First, string Last)
LookupName(long id)

002 var names = LookupName(0);
003 var firstName = names.First;
004 var lastName = names.Last;

The return type is still ValueTuple<string,
string>, but now the compiler adds a TupleEle-
mentNames attribute to the function. This allows
code that consumes the function to use the descrip-
tive names instead of Item1/Item2.

WARNING: The TupleElementNames attribute is only
honored by compilers. If you use reflection on the
return type, you will only see the naked ValueTu-
ple<T> struct. Because the attribute is on the func-
tion itself by the time you get a result, that informa-
tion is lost.

The compiler maintains the illusion of extra types as
long as it can. For example, consider these declara-
tions:

001 var a = LookupName(0);
002 (string First, string Last) b =

LookupName(0);
003 ValueTuple<string, string> c =

LookupName(0);
004 (string make, string model) d =

LookupName(0);

From the compiler’s perspective, a is a (string
First, string Last) just like b. Since c is explicitly
declared as a ValueTuple<string, string>, there
is no c.First property.

Example d shows where this design breaks down and
causes you to lose a measure of type safety. It is re-
ally easy to accidentally rename fields, allowing you
to assign one tuple into a different tuple that hap-
pens to have the same shape. Again, this is because
the compiler doesn’t really see (string First,
string Last) and (string make, string mod-
el) as different types.

ValueTuple is Mutable
An interesting note about ValueTuple is that it is mu-
table. Mads Torgersen explains why:

The reasons why mutable structs are often bad, don’t
apply to tuples.

If you write a mutable struct in the usual encapsulat-
ed way, with private state and public, mutator prop-
erties and methods, then you are in for some bad
surprises. The reason is that whenever those structs
are held in a readonly variable, the mutators will si-
lently work on a copy of the struct!

Tuples, however, simply have public, mutable fields.
By design there are no mutators, and hence no risk of
the above phenomenon.

Also, again because they are structs, they are copied
whenever they are passed around. They aren’t direct-
ly shared between threads, and don’t suffer the risks
of “shared mutable state” either. This is in contrast to
the System.Tuple family of types, which are classes
and therefore need to be immutable to be thread
safe.

Note he said “fields”, not “properties”. This may cause
problems with reflection-based libraries that con-
sume the results of a tuple-returning function.

Guidelines for Tuple Returns
• CONSIDER using tuple returns instead of out pa-

rameters when the list of fields is small and will
never change.

• DO use PascalCase for descriptive names in the
return tuple. This makes the tuple fields look like
properties on normal classes and structs.

• DO use var when reading a tuple return without
deconstructing it. This avoids accidentally misla-
beling fields.

• AVOID returning value tuples with a total size of
more than 16 bytes. Note, reference variables al-
ways count as 4 bytes on a 32-bit OS and 8 bytes
on a 64-bit OS.

• AVOID returning value tuples if reflection is ex-
pected to be used on the returned value.

• DO NOT use tuple returns on public APIs if there
is a chance additional fields will need to be re-
turned in future versions. Adding fields to a tuple
return is a breaking change.

Deconstructing Multi-Value Returns
Going back to our LookupName example, it seems
somewhat annoying to create a names variable that
will only be used momentarily before it is replaced
by separate locals. C# 7 also addresses this using
what it calls “deconstruction”. The syntax has several
variants:

A Preview of C# 7 // eMag Issue 45 - Oct 201620

001 (string first, string last) =
LookupName(0);

002 (var first, var last) = LookupName(0);
003 var (first, last) = LookupName(0);
004 (first, last) = LookupName(0);

In the last line of the above example, it is assumed
the variables first and last were previously declared.

Deconstructors
Though similar in name to “destructor”, a deconstruc-
tor has nothing to do with destroying an object. Just
as a constructor combines separate values into one
object, a deconstructor takes one object and sepa-
rates it. A deconstructor allows any class to offer the
deconstruction syntax described above. Let’s consid-
er the Rectangle class. It has this constructor:

001 public Rectangle(int x, int y, int
width, int height)

When you call ToString on a new instance you get,
“{X=0,Y=0,Width=0,Height=0}”. The combination of
these two facts tells us what order to present the
fields in our custom deconstruction method.

001 public void Deconstruct(out int x,
out int y, out int width, out int
height)

002 {
003 x = X;
004 y = Y;
005 width = Width;
006 height = Height;
007 }
008
009 var (x, y, width, height) =

myRectangle;
010 Console.WriteLine(x);
011 Console.WriteLine(y);
012 Console.WriteLine(width);
013 Console.WriteLine(height);

You may be wondering why output parameters are
used instead of a return tuple. Part of the reason may
be performance, as this reduces the amount of copy-
ing that needs to occur. But the main reason cited
by Microsoft is it opens the door for overloading De-
construct.

Continuing our case study, we note Rectangle has a
second constructor:

001 public Rectangle(Point location, Size
size);

We answer this with a matching deconstruct meth-
od:

001 public void Deconstruct(out Point
location, out Size size);

002 var (location, size) = myRectangle;

This works so long as each deconstruct method has a
different number of parameters. Even if you explicitly
list out the types, the compiler won’t be able to de-
termine which Deconstruct method to use.

In terms of API design, structs would usually bene-
fit from deconstruction. Classes, especially models
or DTOs such as Customer and Employee, proba-
bly shouldn’t have a deconstruct method. There is
no way to resolve questions such as “Should it be
(firstName, lastName, phoneNumber, email) or (first-
Name, lastName, email, phoneNumber)?” in a way
that will make everyone happy.

Guidelines for Deconstructors
• CONSIDER using deconstruction when reading

tuple return values, but be aware of mislabeling
mistakes.

• DO provide a custom deconstruct method for
structs.

• DO match the field order in a class’s constructor,
ToString override, and Deconstruct method.

• CONSIDER providing secondary deconstruct
methods if the struct has multiple constructors.

• DO NOT expose Deconstruct methods on class-
es when it isn’t obvious what order the fields
should appear in.

• DO NOT expose multiple Deconstruct methods
with the same number of parameters.

Out variables
C# 7 offers two new syntax options for calling func-
tions with “out” parameters. You can now declare
variables in function calls.

001 if (int.TryParse(s, out var i))
002 {
003 Console.WriteLine(i);
004 }

The other option is to ignore the output parameter
entirely using a “wildcard”.

001 if (int.TryParse(s, out *))
002 {
003 Console.WriteLine(“success”);
004 }

There is a lot of debate about the wildcard syntax.
Many people don’t like reusing the multiplication
operator and would rather see a keyword such as
“void” or “ignore”. Others would like to use an under-

A Preview of C# 7 // eMag Issue 45 - Oct 2016 21

score (_), which is common in functional program-
ming languages.

While the wildcards can be convenient, they imply a
design flaw in the API. Under most circumstances, it
would be better to simply offer an overload that omits
the out parameters when they would otherwise nor-
mally be ignored.

Guidelines for Out Variables
• CONSIDER providing a tuple return alternative to

out parameters.
• AVOID using out or ref parameters. [See Frame-

work Design Guidelines]
• CONSIDER providing overloads that omit the out

parameters so wildcards are not needed.

Local Functions and Iterators
Local functions are an interesting construct. At first
glance they appear to be a slightly cleaner syntax for
creating anonymous functions. Here you can see the
differences.

001 public DateTime Max_Anonymous_
Function(IList<DateTime> values)

002 {
003 Func<DateTime, DateTime, DateTime>

MaxDate = (left, right) =>
004 {
005 return (left > right) ? left :

right;
006 };
007
008 var result = values.First();
009 foreach (var item in values.

Skip(1))
010 result = MaxDate(result,

item);
011 return result;
012 }
013
014 public DateTime Max_Local_

Function(IList<DateTime> values)
015 {
016 DateTime MaxDate(DateTime left,

DateTime right)
017 {
018 return (left > right) ? left :

right;
019 }
020
021 var result = values.First();
022 foreach (var item in values.

Skip(1))
023 result = MaxDate(result,

item);
024 return result;
025 }

However, once you start digging into them some in-
teresting properties emerge.

Anonymous Functions vs. Local Functions
When you create a normal anonymous function, it
always creates a matching hidden class to store the
function. An instance of this class is created and
stored in a static field on the same hidden class. Thus,
once created there is no further overhead.

Local functions are different in that no hidden class is
needed. Instead, the function is represented as a static
function in the same class as its parent function.

Closures
If your anonymous or local function refers to a vari-
able in the containing function, it is called a “closure”
because it closes over or captures the local function.
Here is an example,

001 public DateTime Max_Local_
Function(IList<DateTime> values)

002 {
003 int callCount = 0;
004
005 DateTime MaxDate(DateTime left,

DateTime right)
006 {
007 callCount++; <--The variable

callCount is being closed over.
008 return (left > right) ? left :

right;
009 }
010
011 var result = values.First();
012 foreach (var item in values.

Skip(1))
013 result = MaxDate(result,

item);
014 return result;
015 }

For anonymous functions, this requires a new instance
of the hidden class each time the containing function
is called. This ensures each call to the function has its
own copy of the data that is shared between the par-
ent and anonymous function.

The downside of this design is that each call to the
anonymous function requires instantiating a new ob-
ject. This can make it expensive to use, as it puts pres-
sure on the garbage collector.

With a local function, a hidden struct is created in-
stead of a hidden class. This allows it to continue

https://msdn.microsoft.com/en-us/library/ms229015(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms229015(v=vs.110).aspx

A Preview of C# 7 // eMag Issue 45 - Oct 201622

storing pre-call data while eliminating the need to
instantiate a separate object. Similar to the anony-
mous function, the local function is physically stored
in the hidden struct.

Delegates
When creating an anonymous or local function, you’ll
often want to package it in a delegate so that you
can use it in an event handler or LINQ expression.

Anonymous functions are, by definition, anony-
mous. So in order to use them, you always need to
store them in a variable or argument as a delegate.

Delegates cannot point to structs (unless they are
boxed, which has weird semantics). So if you create a
delegate that points to a local function, the compil-
er creates a hidden class instead of a hidden struct.
And if that local function is a closure, a new instance
of the hidden class is created each time the parent
function is called.

Iterators
In C#, functions that use yield return to expose an
IEnumerable<T> cannot immediately validate
its parameters. Instead, the parameter validation
doesn’t occur until MoveNext is called on the anony-
mous enumerator that was returned.

This isn’t a problem in VB because it supports anony-
mous iterators. Here is an example from MSDN:

001 Public Function GetSequence(low As
Integer, high As Integer) _

002 As IEnumerable
003 ‘ Validate the arguments.
004 If low < 1 Then Throw New

ArgumentException(“low is too low”)
005 If high > 140 Then Throw New

ArgumentException(“high is too
high”)

006
007 ‘ Return an anonymous iterator

function.
008 Dim iterateSequence = Iterator

Function() As IEnumerable
009 For

index = low To high
010

Yield index
011 Next
012 End

Function
013 Return iterateSequence()
014 End Function

In the current version of C#, GetSequence and its it-
erator need to be entirely separate functions. With
C# 7, these can be combined through the use of a
local function.

001 public IEnumerable<int>
GetSequence(int low, int high)

002 {
003 if (low < 1)
004 throw new

ArgumentException(“low is too
low”);

005 if (high > 140)
006 throw new

ArgumentException(“high is too
high”);

007
008 IEnumerable<int> Iterator()
009 {
010 for (int i = low; i <= high;

i++)
011 yield return i;
012 }
013
014 return Iterator();
015 }

Iterators require building a state machine, so they
behave like closures returned as a delegate in terms
of hidden classes.

Guidelines for Anonymous and Local Functions
• DO use local functions instead of anonymous

functions when a delegate is not needed, espe-
cially when a closure is involved.

• DO use local iterators when returning an IEnu-
merator when parameters need to be validated.

• CONSIDER placing local functions at the very be-
ginning or end of a function to visually separate
them from their parent function.

• AVOID using closures with delegates in perfor-
mance sensitive code. This applies to both anon-
ymous and local functions.

Ref Returns, Locals, and Properties
Structs have some interesting performance charac-
teristics. Since they are stored in line with their par-
ent data structure, they don’t have the object header
overhead of normal classes. This means you can pack
them very densely in arrays with little or no wasted
space. Besides reducing your overall memory over-
head, this gives you great locality, making your CPU’s
tiny cache much more efficient. This is why people
working on high performance applications love
structs.

https://msdn.microsoft.com/en-us/library/mt639330.aspx
https://msdn.microsoft.com/en-us/library/mt639330.aspx

A Preview of C# 7 // eMag Issue 45 - Oct 2016 23

But if your struct is too large, you have to be really
careful about making unnecessary copies. Micro-
soft’s guideline for this is 16 bytes, which is enough
for 2 doubles or 4 integers. That’s not much, though
sometimes you can stretch it using bit-fields.

You also have to be extremely careful with mutable
structs. It is really easy to accidentally make changes
to a copy of the struct when you were intending to
modify the original.

Ref Locals
One way around this is to use smart pointers so that
you never need to make a copy. Here is some perfor-
mance sensitive code from an ORM I’ve been work-
ing on:

001 for (var i = 0; i < m_Entries.Length;
i++)

002 {
003 if (string.Equals(m_Entries[i].

Details.ClrName, item.Key,
StringComparison.OrdinalIgnoreCase)

004 || string.Equals(m_
Entries[i].Details.SqlName,
item.Key, StringComparison.
OrdinalIgnoreCase))

005 {
006 var value = item.Value ??

DBNull.Value;
007
008 if (value == DBNull.Value)
009 {
010 if

(!ignoreNullProperties)
011 parts.Add($”{m_

Entries[i].Details.QuotedSqlName}
IS NULL”);

012 }
013 else
014 {
015 m_Entries[i].

ParameterValue = value;
016 m_Entries[i].UseParameter

= true;
017 parts.Add($”{m_

Entries[i].Details.QuotedSqlName}
= {m_Entries[i].Details.
SqlVariableName}”);

018 }
019
020 found = true;
021 keyFound = true;
022 break;
023 }
024 }

The first thing you’ll note is it doesn’t use for-each.
To avoid the copy, it has to use the old style for loop.
And even then, all reads and writes are performed
directly against the value in the m_Entries array.

With C# 7’s ref locals, you could significantly reduce
the clutter without changing the semantics.

001 for (var i = 0; i < m_Entries.Length;
i++)

002 {
003 ref Entry entry = ref m_

Entries[i]; //create a reference
004 if (string.Equals(entry.

Details.ClrName, item.Key,
StringComparison.OrdinalIgnoreCase)

005 || string.Equals(entry.
Details.SqlName, item.Key,
StringComparison.OrdinalIgnoreCase))

006 {
007 var value = item.Value ??

DBNull.Value;
008
009 if (value == DBNull.Value)
010 {
011 if

(!ignoreNullProperties)
012 parts.Add($”{entry.

Details.QuotedSqlName} IS NULL”);
013 }
014 else
015 {
016 entry.ParameterValue =

value;
017 entry.UseParameter =

true;
018 parts.Add($”{entry.

Details.QuotedSqlName} = {entry.
Details.SqlVariableName}”);

019 }
020
021 found = true;
022 keyFound = true;
023 break;
024 }
025 }

This works because a “ref local” is really a safe pointer.
We say it is “safe” because the compiler won’t allow
you to point to anything ephemeral such as the re-
sult of normal function.

And in case you are wondering, “ref var entry =
ref m_Entries[i];” is valid syntax. You cannot,
however, have it unbalanced. Either ref is used for
both the declaration and the expression or neither
use it.

A Preview of C# 7 // eMag Issue 45 - Oct 201624

Ref Returns
Complementing this feature is the ref return. This al-
lows you create copy-free function. Continuing our
example, we can pull out the search behavior into its
own static function.

001 static ref Entry FindColumn(Entry[]
entries, string searchKey)

002 {
003 for (var i = 0; i < entries.

Length; i++)
004 {
005 ref Entry entry = ref

entries[i]; //create a reference
006 if (string.Equals(entry.

Details.ClrName, searchKey,
StringComparison.OrdinalIgnoreCase)

007 || string.
Equals(entry.Details.SqlName,
searchKey, StringComparison.
OrdinalIgnoreCase))

008 {
009 return ref entry;
010 }
011 }
012 throw new Exception(“Column not

found”);
013 }

In this example we returned a reference to an array
element. You can also return references to fields on
objects, ref properties (see below), and ref parame-
ters.

001 ref int Echo(ref int input)
002 {
003 return ref input;
004 }
005 ref int Echo2(ref Foo input)
006 {
007 return ref Foo.Field;
008 }

An interesting feature of ref returns is the caller can
choose whether or not to use it. Both of the follow-
ing lines are equally valid:

001 Entry copy = FindColumn(m_Entries,
“FirstName”);

002 ref Entry reference = ref
FindColumn(m_Entries, “FirstName”);

Ref Returns and Properties
You can create a ref return style property, but only if
the property is read only. For example,

001 public ref int Test { get { return
ref m_Test; } }

For immutable structs, this pattern seems like a no
brainer. There’s no extra cost to the consumer, who
can choose to read it as either a ref or normal value
as they see fit.

For mutable structs, things get interesting. First of
all, this fixes the old problem of accidentally trying to
modify a struct returned by a property, only to have
the modification lost to the ether. Consider this class:

001 public class Shape
002 {
003 Rectangle m_Size;
004 public Rectangle Size { get {

return m_Size; } }
005 }
006 var s = new Shape();
007 s.Size.Width = 5;

In C# 1, the size wouldn’t be changed. In C# 6, it
would be a compiler error. In C# 7, we just add ref
and everything works.

001 public ref Rectangle Size { get {
return ref m_Size; } }

At first glance it looks like this will prevent you from
overriding the whole size at once. But as it turns out,
you can still write code such as:

001 var rect = new Rectangle(0, 0, 10,
20);

002 s.Size = rect;

Even though the property is “read-only”, this works
exactly as expected. One just has to understand one
isn’t getting back a Rectangle, but a pointer to a loca-
tion that holds Rectangles.

Now we’ve got a problem. Our immutable struct is
no longer immutable. Even though individual fields
cannot be altered, the whole value can be replaced
via the ref property. C# will warn you about this by
disallowing this syntax:

001 readonly int m_LineThickness;
002 public ref int LineThickness { get {

return ref m_LineThickness; } }

Since there is no such thing as a read-only ref return,
you can’t create a reference to a read-only field.

A Preview of C# 7 // eMag Issue 45 - Oct 2016 25

Ref Returns and Indexers
Probably the biggest limitation of ref returns and lo-
cals is it requires a fixed point to reference. Consider
this line:

001 ref int x = ref myList[0];

This won’t work because a list, unlike an array, makes
a copy of the struct when you read its value. Below
is the actual implementation of List<T> from Refer-
ence Source.

001 public T this[int index] {
002 get {
003 // Following trick can reduce

the range check by one
004 if ((uint) index >= (uint)_

size) {
005 ThrowHelper.

ThrowArgumentOutOfRangeException();
006 }
007 Contract.EndContractBlock();
008 return _items[index]; <--

return makes a copy
009 }

This also affects ImmutableArray<T> and normal ar-
rays when accessed via the IList<T> interface. How-
ever, you could create your own version of List<T>
that defines its index as a ref return.

001 public ref T this[int index] {
002 get {
003 // Following trick can reduce

the range check by one
004 if ((uint) index >= (uint)_

size) {
005 ThrowHelper.

ThrowArgumentOutOfRangeException();
006 }
007 Contract.EndContractBlock();
008 return ref _items[index]; <--

return ref makes a reference
009 }

If you do this, you’ll need to explicitly implement the
IList<T> and IReadOnlyList<T> interfaces. This is
because ref returns have a different signature than
normal returns and thus don’t satisfy the interface’s
requirements.

Since indexers are actually just specialized proper-
ties, they have the same limitations as ref properties;
meaning you can’t explicitly define setters and the
indexer is writable.

Guidelines for Ref Returns, Locals, and Properties
• CONSIDER using ref returns instead of index val-

ues in functions that work with arrays.
• CONSIDER using ref returns instead of normal re-

turns for indexers on custom collection classes
that hold structs.

• DO expose properties containing mutable
structs as ref properties.

• DO NOT expose properties containing im-
mutable structs as ref properties.

• DO NOT expose ref properties on immutable or
read-only classes.

• DO NOT expose ref indexers on immutable or
read-only collection classes.

ValueTask and Generalized Async
Return Types
When the Task class was created, its primary role was
to simplify multi-threaded programming. It created
a channel that let you push long running operations
into the thread pool and read back the results at a
later date on your UI thread. And when using fork-
join style concurrency, it performed admirably.

With the introduction of async/await in .NET 4.5,
some of its flaws started to show. As we reported in
2011 (see Task Parallel Library Improvements in .NET
4.5), creating a Task object took longer than was ac-
ceptable and thus the internals had to be reworked.
This resulted in a “a 49 to 55% reduction in the time
it takes to create a Task<Int32> and a 52% reduction
in size”.

That’s a good step, but Task still allocates memory.
So when you are using it in a tight loop such as seen
below, a lot of garbage can be produced.

001 while (await stream.ReadAsync(buffer,
offset, count) != 0)

002 {
003 //process buffer
004 }

And as been said many times before, the key to high
performance C# code is in reducing memory alloca-
tions and the subsequent GC cycle. Joe Duffy of Mic-
rosoft wrote in Asynchronous Everything:

First, remember, Midori was an entire OS written to
use garbage collected memory. We learned some
key lessons that were necessary for this to perform
adequately. But I’d say the prime directive was to
avoid superfluous allocations like the plague. Even
short-lived ones. There is a mantra that permeated
.NET in the early days: Gen0 collections are free. Un-
fortunately, this shaped a lot of .NET’s library code,

https://msdn.microsoft.com/en-us/library/system.threading.tasks.task(v=vs.110).aspx
https://www.infoq.com/news/2011/12/TPL-Performance
https://www.infoq.com/news/2011/12/TPL-Performance
http://joeduffyblog.com/2015/11/19/asynchronous-everything/

A Preview of C# 7 // eMag Issue 45 - Oct 201626

and is utter hogwash. Gen0 collections introduce
pauses, dirty the cache, and introduce beat frequen-
cy issues in a highly concurrent system.

The real solution here is to create a struct-based task
to use instead of the heap-allocated version. This was
actually created under the name ValueTask<T> and
was published in the System.Threading.Tasks.Exten-
sions library. And because await already works on
anything that exposes the right method, you can use
it today.

Manually Exposing ValueTask<T>
The basic use case for ValueTask<T> is when you
expect the result to be synchronous most of the time
and you want to eliminate unnecessary memory al-
locations. To start with, let’s say you have a traditional
task-based asynchronous method.

001 public async Task<Customer>
ReadFromDBAsync(string key)

Then we wrap it in a caching method:

001 public ValueTask<Customer>
ReadFromCacheAsync(string key)

002 {
003 Customer result;
004 if (_Cache.TryGetValue(key, out

result))
005 return new

ValueTask<Customer>(result); //no
allocation

006
007 else
008 return new

ValueTask<Customer>(ReadFromCache
Async_Inner(key));

009 }

And add a helper method to build the async state
machine.

001 async Task<Customer>
ReadFromCacheAsync_Inner(string
key)

002 {
003 var result = await

ReadFromDBAsync(key);
004 _Cache[key] = result;
005 return result;
006 }

With this in place, consumers can call ReadFrom-
CacheAsync with exactly the same syntax as Read-
FromDBAsync;

001 async Task Test()
002 {
003 var a = await

ReadFromCacheAsync(“aaa”);
004 var b = await

ReadFromCacheAsync(“bbb”);
005 }

Generalized Async
While the above pattern is not difficult, this is rath-
er tedious to implement. And as we know, the more
tedious the code is to write, the more likely it is to
contain simple mistakes. So the current proposal for
C# 7 is to offer generalized async returns.

Under the current design, you can only use the async
keyword with methods that return Task, Task<T>, or
void. When complete, generalized async returns will
extend that capability to anything “tasklike”. Some-
thing is considered to be tasklike if it has an Asyn-
cBuilder attribute. This indicates the helper class
used to create the tasklike object.

In the feature design notes, Microsoft estimates
maybe five people will actually create tasklike class-
es that gain general acceptance. Everyone else will
most likely use one of those five. Here is our above
example using the new syntax:

001 public async ValueTask<Customer>
ReadFromCacheAsync(string key)

002 {
003 Customer result;
004 if (_Cache.TryGetValue(key, out

result))
005 return result; //no

allocation
006 else
007 return await

ReadFromDBAsync(key); //unwraps the
Task and re-wrap in ValueTask

008 }

As you can see, we’ve eliminated the helper method
and, other than the return type, it looks just like any
other async method.

When to Use ValueTask<T>
So should you use ValueTask<T> instead of
Task<T>? Not necessarily. It can be a little hard to
find, so we’ll quote the documentation:

Methods may return an instance of this value type
when it’s likely that the result of their operations will

http://blog.i3arnon.com/2015/11/30/valuetask/
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/
https://github.com/dotnet/roslyn/issues/10902

A Preview of C# 7 // eMag Issue 45 - Oct 2016 27

be available synchronously and when the method is
expected to be invoked so frequently that the cost of
allocating a new Task<TResult> for each call will be
prohibitive.

There are tradeoffs to using a ValueTask<TResult>
instead of a Task<TResult>. For example, while a
ValueTask<TResult> can help avoid an allocation
in the case where the successful result is available
synchronously, it also contains two fields whereas a
Task<TResult> as a reference type is a single field.
This means that a method call ends up returning two
fields worth of data instead of one, which is more
data to copy. It also means that if a method that re-
turns one of these is awaited within an async meth-
od, the state machine for that async method will be
larger due to needing to store the struct that’s two
fields instead of a single reference.

Further, for uses other than consuming the re-
sult of an asynchronous operation via await, Val-
ueTask<TResult> can lead to a more convoluted
programming model, which can in turn actually lead
to more allocations. For example, consider a meth-
od that could return either a Task<TResult> with
a cached task as a common result or a Val-
ueTask<TResult>. If the consumer of the result
wants to use it as a Task<TResult>, such as to use
with in methods like Task.WhenAll and Task.
WhenAny, the ValueTask<TResult> would first
need to be converted into a Task<TResult> using
ValueTask<TResult>.AsTask, which leads to an
allocation that would have been avoided if a cached
Task<TResult> had been used in the first place.

As such, the default choice for any asynchro-
nous method should be to return a Task or
Task<TResult>. Only if performance analysis proves
it worthwhile should a ValueTask<TResult> be
used instead of Task<TResult>. There is no non-ge-
neric version of ValueTask<TResult> as the Task.
CompletedTask property may be used to hand back
a successfully completed singleton in the case where
a Task-returning method completes synchronously
and successfully.

This is a rather long passage, so we’ve summarized it
in our guidelines below.

Guidelines for ValueTask<T>
• CONSIDER using ValueTask<T> in performance

sensitive code when results will usually be re-
turned synchronously.

• CONSIDER using ValueTask<T> when memory
pressure is an issue and Tasks cannot be cached.

• AVOID exposing ValueTask<T> in public APIs
unless there are significant performance impli-
cations.

• DO NOT use ValueTask<T> when calls to Task.
WhenAll or WhenAny are expected.

Expression Bodied Members
An expression bodied member allows one to elim-
inate the brackets for simple functions. This takes
what is normally a four-line function and reduces it
to a single line. For example:

001 public override string ToString()
002 {
003 return FirstName + “ “ +

LastName;
004 }
005 public override string ToString() =>

FirstName + “ “ + LastName;

Care must be taken to not go too far with this. For ex-
ample, let’s say you need to avoid the leading space
when the first name is empty. You could write:

001 public override string ToString() =>
!string.IsNullOrEmpty(FirstName)
? FirstName + “ “ + LastName :
LastName;

But then you might want to check for a missing last
name.

001 public override string ToString() =>
!string.IsNullOrEmpty(FirstName)
? FirstName + “ “ + LastName :
(!string.IsNullOrEmpty(LastName) ?
LastName : “No Name”);

As you can see, one can get carried away quite quick-
ly when using this feature. So while you can do a lot
by chaining together multiple conditional or null-co-
alescing operators, you should exhibit restraint.

Expression Bodied Properties
New in C# 6 are expression bodied properties. They
are useful when working with MVVM style models
that use a Get/Set method for handling things such
as property notifications.

Here is the C# 6 code:

001 public string FirstName
002 {
003 get { return Get<string>(); }
004 set { Set(value); }
005 }

A Preview of C# 7 // eMag Issue 45 - Oct 201628

And the C# 7 alternative:

001 public string FirstName
002 {
003 get => Get<string>();
004 set => Set(value);
005 }

While the line count hasn’t gone down, much of the
line-noise is gone. And with something as small and
repetitive as a property, every little bit helps.

For more information on how Get/Set works in these
examples, see “CallerMemberName” in the news re-
port titled C#, VB.NET To Get Windows Runtime Sup-
port, Asynchronous Methods.

Expression Bodied Constructors
Also new to C# 7 are expression bodied constructors.
Here is an example:

001 class Person
002 {
003 public Person(string name) =>

Name = name;
004 public string Name { get; }
005 }

The use here is very limited. It really only works if you
have zero or one parameters. As soon as you add a
second parameter that needs to be assigned to a
field/property, you have to switch to a traditional
constructor. You also can’t initialize other fields, hook
up event handlers, etc. (Parameter validation is pos-
sible, see “Throw Expressions” below.)

So our advice is to simply ignore this feature. It is go-
ing to make your single-parameter constructors look
different from all of your other constructors while of-
fering only a very small reduction in code size.

Expression Bodied Destructors
In an effort to make C# more consistent, destructors
are allowed to an expression bodied member just
like methods and constructors.

For those who have forgotten, a destructor in C# is
really an override of the finalizer method on System.
Object. Considering how significantly it changes
how the GC treats the class, I would prefer you write
this:

001 protected override void Finalize()
002 {
003 ReleaseResources();
004 }

This way it is very obvious that you have a finalizer.
Unfortunately, that’s not an option in C#. Instead you
are required to use the destructor syntax.

001 ~UnmanagedResource()
002 {
003 ReleaseResources();
004 }

One problem with this is it looks a lot like a construc-
tor, and thus can be easily overlooked. Another is
that it mimics the destructor syntax in C++, which
has completely different semantics. But that ship has
sailed, so let’s move on to the new syntax.

001 ~UnmanagedResource() =>
ReleaseResources();

Now we have a single, easily missed line that brings
the object into the finalizer queue lifecycle. This isn’t
like a trivial property or ToString method, this is
something really important that needs to be visible.
So again I advise that you don’t use it.

Guidelines for Expression Bodied Members
• DO use expression bodied members for simple

properties.
• DO use expression bodied members for meth-

ods that just call other overloads of the same
method.

• CONSIDER using expression bodied members
for trivial methods.

• DO NOT use more than one conditional (a ? b : c)
or null-coalescing (x ?? y) operator in an expres-
sion bodied member.

• DO NOT use expression bodied members for
constructors and finalizers.

Throw Expressions
Superficially, programming languages can generally
be divided into two styles:

• Everything is an expression
• Statements, declarations, and expressions are

separate concepts

Ruby is an instance of the former, where even decla-
rations are expressions. By contrast, Visual Basic rep-
resents the latter, with a strong distinction between
statements and expressions. For example, there is
a completely different syntax for “if” when it stands
alone and when it appears as part of a larger expres-
sion.

https://www.infoq.com/news/2011/09/net-v5.0
https://www.infoq.com/news/2011/09/net-v5.0

A Preview of C# 7 // eMag Issue 45 - Oct 2016 29

C# is mostly in the second camp, but due to its C
heritage it does allow you to treat assignment state-
ments as if they were expressions. This allows you to
write code such as:

001 while ((current = stream.ReadByte())
!= -1)

002 {
003 //do work;
004 }

For the first time, C# 7 will be allowing a non-assign-
ment statement to be used as an expression. With-
out any changes to the syntax, you can now place a
“throw” statement anywhere that’s expecting a nor-
mal expression. Here are some examples from Mads
Torgersen’s press release:

001 class Person
002 {
003 public string Name { get; }
004
005 public Person(string name)

=> Name = name ?? throw new
ArgumentNullException(“name”);

006
007 public string GetFirstName()
008 {
009 var parts = Name.Split(“ “);
010 return (parts.Length

> 0) ? parts[0] : throw new
InvalidOperationException(“No
name!”);

011 }
012
013 public string

GetLastName() => throw new
NotImplementedException();

014 }

In each of these examples, it is pretty obvious what’s
going on. But what if we move the throws expres-
sion?

001 return (parts.Length == 0) ? throw
new InvalidOperationException(“No
name!”) : parts[0];

Now it isn’t quite so clear. While the left and right
clauses are related, the middle clause has nothing to
do with them. Seen pictorially, the first version has
the “happy path” on the left and the error path on
the right. The second version has the error path split-
ting the happy path in half, breaking the flow of the
whole line. (Image 1)

Let’s look at another example. Here we are including
a function call in the mix.

001 void Save(IList<Customer> customers,
User currentUser)

002 {
003 if (customers == null ||

customers.Count == 0) throw new
ArgumentException(“No customers to
save”);

004
005 _Database.SaveEach(“dbo.

Customer”, customers, currentUser);
006 }
007
008 void Save(IList<Customer> customers,

User currentUser)
009 {
010 _Database.SaveEach(“dbo.

Customer”, (customers == null ||
customers.Count == 0) ? customers
: throw new ArgumentException(“No
customers to save”), currentUser);

011 }

Already we can see the length alone is problematic
(though long lines are not unheard of with LINQ). But
to get a better idea of how one reads the code, we’ll
color the conditional orange, the function call blue,
the function arguments gold, and the error path red.
(Image 2)

Again, you can see context keeps bouncing around
with the parameters found in three separate places.

Image 2

Image 1

A Preview of C# 7 // eMag Issue 45 - Oct 201630

Guidelines for Throw Expressions
• CONSIDER placing throw expressions on the

right side of conditional (a ? b : c) and null-co-
alescing (x ?? y) operators in assignments/return
statements.

• AVOID placing throw expressions on the middle
slot of a conditional operator.

• DO NOT place throw expressions inside a func-
tion’s parameter list.

For more information on how exceptions affect API
design, see Designing with Exceptions in .NET.

Pattern Matching and Enhanced
Switch Blocks
Pattern matching, which among other things en-
hances switch blocks, doesn’t have any impact on
API design. So while it certainly can make working
with heterogeneous collections easier, it is still bet-
ter to use shared interfaces and polymorphism when
possible.

That said, there are some implementation details
one should be aware of. Consider this example from
the announcement in August:

001 switch(shape)
002 {
003 case Circle c:
004 WriteLine($”circle with radius

{c.Radius}”);
005 break;
006 case Rectangle s when (s.Length ==

s.Height):
007 WriteLine($”{s.Length} x

{s.Height} square”);
008 break;
009 case Rectangle r:
010 WriteLine($”{r.Length} x

{r.Height} rectangle”);
011 break;
012 default:
013 WriteLine(“<unknown shape>”);
014 break;
015 case null:
016 throw new

ArgumentNullException(nameof(shape));
017 }

Previously, the order in which case expressions oc-
curred didn’t matter. In C# 7, like Visual Basic, switch
statements are evaluated almost strictly in order. This
allows for when expressions.

The practical effect of this is you want your most
common cases to be first in the switch block, just

as you would in a series of if-else-if blocks. Likewise,
if any check is particularly expensive to make then
it should be near the bottom so it is executed only
when necessary.

The exception to the strict ordering rule is the default
case. It is always processed last, regardless of where it
actually appears in the order. This can make the code
harder to understand, so I recommend always plac-
ing the default case last.

Pattern Matching Expressions
While switch blocks will probably be the most com-
mon use for pattern matching in C#; that is not the
only place they can appear. Any Boolean expression
evaluated at runtime can include a pattern expres-
sion.

Here is an example that determines if the variable ‘o’
is a string, and if so tries to parse it as an integer.

001 if (o is string s && int.TryParse(s,
out var i))

002 {
003 Console.WriteLine(i);
004 }

Note how a new variable named ‘s’ is created by the
pattern expression, then reused later by TryParse.
This technique can be chained together for even
more complex expressions:

001 if ((o is int i) || (o is string s &&
int.TryParse(s, out i)))

002 {
003 Console.WriteLine(i);
004 }

For the sake of comparison, here’s what the above
code would typically look like in C# 6.

001 if (o is int)
002 {
003 Console.WriteLine((int)o);
004 }
005 else if (o is string && int.

TryParse((string) o, out i))
006 {
007 Console.WriteLine(i);
008 }

It is too soon to tell if the new pattern matching code
is more efficient the older style, but it can potentially
eliminate some of the redundant type checks.

https://www.infoq.com/articles/Exceptions-API-Design

PREVIOUS ISSUES

44
41

#noprojects

#NoProjects – a number of authors have challenged
the idea of the project as a delivery mechanism for in-
formation technology product development. The two
measures of success and goals of project manage-
ment and product development don’t align and the
project mindset is even considered to be an inhibitor
against product excellence. This emag presents some
alternative approaches.

42
Java Agents and Bytecode

In this eMag we have curated articles on bytecode
manipulation, including how to manipulate bytecode
using three important frameworks: Javassist, ASM,
and ByteBuddy, as well as several higher level use cas-
es where developers will benefit from understanding
bytecode.

43
Exploring Container
Technology in the Real
World

The creation of many competing, complementary
and supporting container technologies has followed
in the wake of Docker, and this has led to much hype
and some disillusion around this space. This eMag
aims to cut through some of this confusion and ex-
plain the essence of containers, their current use cas-
es, and future potential.

Technology choices are made, and because of a variety of
reasons--such as multi-year licensing cost, tightly coupled
links to mission-critical systems, long-standing vendor
relationships--you feel “locked into” those choices. In this
InfoQ emag, we explore the topic of cloud lock-in from
multiple angles and look for the best ways to approach it.

Cloud Lock-In

https://www.infoq.com/minibooks/emag-cloud-portability
https://www.infoq.com/minibooks/emag-noprojects
https://www.infoq.com/minibooks/emag-java-agents-bytecode
https://www.infoq.com/minibooks/emag-container-technology

	_GoBack

