$$
\begin{aligned}
& \text { yourname }=\text { mryounae } \times \frac{g t}{u}= \\
& =m \text { trygonae } \times \frac{\omega}{\text { omega }}= \\
& =\operatorname{try} \omega n \times \frac{w}{\omega r}= \\
& =t y w n \times \frac{\tau \phi}{w}= \\
& =t \tau y \phi n \times \frac{p h i}{\phi}= \\
& =i t \tau y h p n \times \frac{M w}{p}= \\
& p=M w \\
& h=w \tau \\
& n=\frac{m}{M} \quad \text { (Amount of Substance) } \\
& =m i t y h^{2} \times \frac{I}{\frac{1}{2} M h^{2}}= \\
& I=\frac{1}{2} M h^{2} \\
& \text { (Moment of Inertia of a Disk) } \\
& =2 M^{-1} m \text { Iity } \times \frac{M r^{2}}{I}= \\
& I=M r^{2} \\
& \text { (Moment of Inertia of a Point Mass) } \\
& =2 m i t r^{2} y \times \frac{D}{2 r}= \\
& D=2 r \\
& \text { (Diameter) } \\
& u=g t \\
& \omega=\text { omega } \\
& \text { (Twenty-Fourth Letter of Greek Alphabet) } \\
& w=\omega r \quad \text { (Angular Velocity) } \\
& w=\tau \phi \quad \text { (Work Done by a Torque) } \\
& \phi=p h i \quad \text { (Twenty-First Letter of Greek Alphabet) } \\
& p=M w \quad \text { (Momentum) } \\
& h=w \tau \quad \text { (Distance) } \\
& \begin{array}{l}
=\text { Mityh }^{2} n \times \frac{\frac{m}{M}}{n}= \\
=\text { mityh }^{2} \times \frac{I}{\frac{1}{2} M h^{2}}= \\
=2 M^{-1} m \text { Iity } \times \frac{M r^{2}}{I}=
\end{array} \\
& =\text { Dmitry. }
\end{aligned}
$$

