Description of the ERP system project.
We represent the group of software developers that has projected and is creating an ERP system. The project supposes the development of a system comparable with such systems as Axapta, SAP, 1C, Etalon. We have analyzed the performance capabilities of the leading ERP systems and attempted to unite their strengths in our project.

We aim at the creation of the system which is most comfortable for business application developers, featuring high performance and scalability.

The central idea of our project is the development of “construction kit” which can be used for the creation of a wide specter of corporate business applications.
Please find below the description of the system and the main technical solutions used by its components:

System Structure

[image: image1]
Central Server – manages the metadata of business applications, user authorization, user right delimiting, distributes the load between application servers. The central server also manages the application server clusters. One central server can manage several independent business applications. Each of business applications functions at its respective application server cluster.
Application Server – acts as work environment for business applications, executing the code of business applications, cashing its metadata and user rights data. Each application server has an intertransactional cash, in which business application object data is cashed. Interacting within a cluster, application servers achieve data consistency of their data cashes.

Client – is the graphical end-user interface. Graphical interface consists of such elements as forms, reports, menus etc. and represents a part of business application metadata. The client also performs cashing of business application data that is displayed in the user interface components.
Physical structure of the system.

System components described above represent services which can be initiated in any amount at any computer of the local network. Let us list the most probable variants of physical disposition of the system components:
· All server components, including DBMS, are present at one PC. This configuration is recommended in case of low load. In this case, clusterization has no point and each business application is executed at the same application server.

· Each of server components, including DBMS, is located at a different PC. In this case, it is recommended to launch a business application on several application servers, uniting them into a cluster. This configuration is recommended when numerous clients are present. Then the scalability feature of the described system is applied.
· Different intermediate variants are possible.

Main Solutions of System Architecture and System Core Realization
· Virtual Machine (VM) for business application code (at the application server)
· Statically typed object-oriented programming language syntactically identical to C#.
· In-built object query language (OQL)
· Additional data types with NULL-value semantics of database (“undefinedable types”)
· Special type declaration syntax like: int#, MyObject#.
· Undefined constant different from null constant
· Inbuilt arithmetical (and others) operators supporting the semantics of the alleged types.
· There exists an additional operator defined.
Reading of any property of an undefined object will result in “undefined” meaning of the respective undefinedable type.
· Compilation into bytecode and its execution
· The possibility of simultaneous execution of numerous sessions by means of using shared metadata (bytecode etc.). A session represents an isolated runtime environment of bytecode.
· Code of each transaction of a business application is executed independently in a separate session
· Generational compacting garbage collector
Integration of the garbage collector with ORM excludes the necessity of using weak references when organizing business application transactional cash
· Data processing
· System features built-in ORM
· System has built-in Object Query Language (OQL)
· The possibility to assign an object query as the value of a variable in the code of a business application. This feature enables the usage of one query in the FROM section of another query, handling it as a parameter.
· Application server has an intertransactional cache with the following features:
· The data is cached between transactions while the application server is operating
· Memory saving is achieved through the absence of excessive copies of object data for each transactions and an effective cache memory allocation strategy.
· The cache supports a strong data consistency in read-commited and snapshot modes, allowing the developer to forget about the data consistency anomalies caused by the presence of a cache.
· For data reading operations the following rule is applied: each subsequent data reading (present in the cache or otherwise) returns the data not older than the previous reading.
· All the cache features listed above are preserved when application servers are working in a cluster.
· Data Access prediction (prefetching)
· It is based on the accumulation and usage of transaction statistics supplied by VM for any given point of bytecode execution at which data access is performed (Context Based Prefetching)
· The collection of optimization effectiveness statistics is constantly performed. This statistics allows to trace the instances where automatic optimization proves ineffective. Such feature acts as a feedback for the optimization subsystem, correcting its performance.
· Programmer or Administrator can analyze the prefetching statistics using a special GUI program
· The program allows to display the prefetching statistics in visual representation form, with the instances of ineffective automatic optimizations highlighted.
· User has the option of assigning obvious hints for the optimizator in such instances.
· The above listed features form a balanced system which allows to:
· Relieve developers of the necessity to place a lot of hints in the business application code
· Enables the developer to place hints in problem instances, in graphical representation (and not in the code) – and base on actual statistics
· Cultivates in developers such programming style which rarely needs hints at all.
· Client Application. At the current development stage is planned to be a Win32 GUI application.
· Dynamically builds GUI based on forms, reports, menus and other elements of user interfaces defined in business-application metadata
· Contains business application object cache necessary for representation.
· No strict requirements of data consistency is applied to this cache.

· The cache monitors the object identity , preventing the appearance of multiple copies of a business object. This feature is used for the synchronization of the representation of the same object by two ore more froms.
· All the applicational logic is executed at the application server. Client application is engaged only in the end-user data representation and data entry.
The Structure of a Business Application and the Process of Its Development

An instance of the system can contain a number of models and info databases.
A model is a source code of a business application as a metaobject tree (namespaces, classes, forms, reports etc.). The model itself is not a business application and can not be executed by the system.

For the execution of a business application a new model-based info database should be created, or an old one re-generated. Info database keeps data and metadata of a business application. A re-generated info database does no longer depend on the initial model.
The business application development process consists of model editing in the configurator, which is rapid application development environment. It contains various designers and application code editor.

The whole model or its separate metaobjects can be compilated. The metaobject interdependencies are created as a result of compilation. Further editing of a metaobject leads to its invalidation and the invalidation of dependent metaobjects.
There exists a special debugging mode of working with the model when it is incrementally compilated in the process of business application functioning. This allows minimizing initiation time for business application in debugging mode and thus facilitating its development.

Development tools and the current project status.
The project is developed in the C++ language and represents a set of dll libraries. For the network interaction between system components the CORBA technology (in ACE TAO implementation) is used. At the present moment the code is compilated by C++ Builder 6 compiler, but the project is viewed as a crossplatform one and proting to other compilators shold present no problems.

GUI applications (client, development environment, administrative utilities) are developed in Delphi Win32 using C++ core client libraries.
Current status of core components:
· Application language compilator and virtual machine are completed
· ORM
· Intertransactional cache - completed
· DSL for persistent object class declaration – complete and built into application language compilator
· Data prefetching subsystems – designed and partially developed
· Object query language – is being designed
· Models
· Server segment and client library – completed
· Minimal metaobject test set is implemented. The specific set of metaobjects necessary for business application development (forms, dictionaries etc.) is a subject for a further development
· Info Database
· The mechanism of model-based info database generation (re-generation) is complete, including the renewing of metadata and business application data table structure. The mechanism of re-generation with incremental compilation is also completed.
· Application Server
· The mechanism of launching application server cluster for test purposes is complete. API and administrative utilities for cluster configuration are under development yet
· The following global subsystems are built in: ORM (intertransactional cache clusterization), VM (code and metadata upload and caching).
· Client session support is implemented. Using global subsystems client session can execute business transaction code.
· The minimal sufficient set for a test business application (test transactions written in the application language using the respective test set of model metaobjects) is completed.
· Test GUI application for internal debugging is completed. It allows to create and edit models, create and re-generate info databases and launch test business transactions. End-user GUI application is under development yet.

Central (Manager) Server

Application Servers

End Clients

Oracle

