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Abstract—The Ear-ECG provides a continuous Lead I like
electrocardiogram (ECG) by measuring the potential differ-
ence related to heart activity by electrodes which are em-
bedded within earphones. However, the significant increase
in wearability and comfort enabled by Ear-ECG is often ac-
companied by a degradation in signal quality - an obstacle
that is shared by the majority of wearable technologies. We
aim to resolve this issue by introducing a Deep Matched Fil-
ter (Deep-MF) for the highly accurate detection of R-peaks
in wearable ECG, thus enhancing the utility of Ear-ECG in
real-world scenarios. The Deep-MF consists of an encoder
stage, partially initialised with an ECG template, and an
R-peak classifier stage. Through its operation as a Matched
Filter, the encoder searches for matches with an ECG tem-
plate in the input signal, prior to filtering these matches with
the subsequent convolutional layers and selecting peaks
corresponding to the ground-truth ECG. The latent repre-
sentation of R-peak information is then fed into a R-peak
classifier, of which the output provides precise R-peak lo-
cations. The proposed Deep Matched Filter is evaluated us-
ing leave-one-subject-out cross-validation over 36 subjects
with an age range of 18-75, with the Deep-MF outperforming
existing algorithms for R-peak detection in noisy ECG. The
Deep-MF achieves a median R-peak recall of 94.9% and a
median precision of 91.2% across subjects when evaluated
with leave-one-subject-out cross validation. Overall, this
Deep-Match framework serves as a valuable step forward
for the real-world functionality of Ear-ECG and, through its
interpretable operation, the acceptance of deep learning
models in e-Health.

Index Terms—Convolutional neural networks, deep
learning, electrocardiography, matched filters, wearable
health monitoring systems.

I. INTRODUCTION

R ECENT advancements in Hearables serve to disrupt the
e-Health market through the provision of continuous mon-

itoring of mental state and vital signs from the ear [1]. Of
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the different sensing modalities within Hearables, one of the
most notable is the Ear-ECG, which provides continuous Lead I
electrocardiogram (ECG) [2], the measurement of the electrical
activity of the heart, through the potential difference between
two in-ear electrodes on opposite sides of the head [3], [4]. The
precise heart rate information from ECG can be used to monitor
stress through heart rate variability metrics [5], [6], [7] and the
detection of irregular heart rhythms (arrhythmia) [8]. Whilst
a chest patch would be preferable to screen for specific heart
conditions, the option of using Ear-ECG opens the opportunity
of detecting irregular heart rhythms in manifold new scenarios.
Moreover, it is feasible that Ear-ECG could provide heart rate
in cases where ear-EEG is already being utilised, such as the
monitoring of sleep [9] and the monitoring of driver fatigue [10].
However, the considerable gain in comfort and wearability
afforded by an in-ear sensor, compared to electrodes on the
chest, comes at the expense of the signal to noise ratio (SNR).
This is because the cardiac-induced potential difference is far
smaller across the head than it is from other recording locations
such as the chest or arms [3]. Indeed, the potential difference
across the heart is often as much as 2 orders of magnitude
lower from the ear than it is at the chest [11]. Moreover, the
Ear-ECG commonly contains other signals comparable in am-
plitude, such as electrical activity generated by eye movements,
known as electrooculography (EOG) [12], [13], and electrical
signals generated by neuronal activity in the brain, known as
electroencephalography (EEG) [9], [14], [15], [16], [17]. In
order to best exploit the benefits of Ear-ECG, algorithms need
to be able to detect the presence of ECG waveform across
challenging range of signal qualities, and to correctly distinguish
the peaks in ECG (R-peaks) from peaks that may occur due to
artefacts or other electrical activity.

Given the well defined structure of ECG, it is natural to ask
whether a matched filter [18], the process of finding a template
and its position in a noisy signal through cross-correlation, can
be used to detect R-peaks in wearable ECG [19], [20]. This
has been demonstrated previously through the combination of
matched filter and Hilbert transform [21], which was shown to
outperform the commonly used Pan-Tompkins algorithm [22]
for R-peak detection. Recent work on the interpretability of
convolutional neural networks (CNNs) has demonstrated that
at a fundamental pattern recognition level, a CNN operates
in the same way as a matched filter, by performing convo-
lution between a learned template kernel and an input signal
or image and exploiting the correlation between the two [23].
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Fig. 1. Ear-ECG earpiece. Left: The placement of one of the ear
electrodes within the ear canal. Right: A labelled prototype Ear-ECG
device, consisting of a foam ear-plug, a cloth electrode and an ear-hook
to stabilise the ear-piece within the ear canal. A gold-cup electrode was
placed on the forehead to provide the ground.

This was further verified through the MNIST handwriting data
set, whereby trained kernels converged to resemble different
numbers [24]. Given the clear benefits of using matched filter-
ing to detect R-peaks in noisy ECG, and the theoretical link
between CNNs and matched filtering [23], it is hypothesised
that a learned convolutional matched filter could be leveraged to
provide superior results for R-peak detection, whilst remaining
fully interpretable in its operation.

To this end, we implement a deep convolutional neural net-
work based matched filter for the efficient and accurate detection
of R-peaks in Ear-ECG with poor signal to noise ratio. The
trained model, whilst demonstrating exceptional performance
over existing methods, has the benefit of full interpretability
through the lens of matched filters, with kernel weights that
exploit and amplify aspects of the ECG pattern.

II. METHODS

A. Hardware and Data

Simultaneous Ear-ECG and either arm-ECG or chest-ECG
(resembling Lead I) was measured from 36 subjects, with an
age range of 18–75. There was a minimum of 2 minutes of
data recorded from each subject, with the majority of subjects
having 5 minutes of ECG data. Recordings took place when
subjects were still or during sleep to minimise the impact of
motion artefacts, but it should be noted that motion artefacts
were still present in the data, albeit rare, and not excluded from
our analysis. Moreover, since many consumers wear earbuds
when sedentary, examining results only on subjects who were
still does not detract from the real world applicability of this
technology. In 34 of the subjects, who were awake and still,
the Ear-ECG was recorded with two earpieces across the head
with a ground electrode placed on the forehead. In two of the
subjects, who were sleeping, the Ear-ECG signal was from a
single ear electrode which was referenced to the contra-lateral
mastoid. The Ear-ECG earpiece, shown in Fig. 1, consisted of a
foam earpiece with a cloth electrode, and electrode gel was used
to reduce the impedance between the electrodes and the skin of

the ear canal. The data set contained data recorded from two
different amplifiers, namely the BrainAmp from BrainVision
(North Carolina, USA) in the subjects that were awake, and
the Somno HD amplifier from Somnomedics (Randersacker,
Germany) in the subjects that were sleeping. Utilising data from
two different electrode configurations and amplifiers served
to confirm that our model was not over-fitting to a specific
recording paradigm. The recordings were performed under the
IC ethics committee approval JRCO 20IC6414. All subjects gave
full informed consent.

The Ear-ECG was down-sampled from 500 Hz to 250 Hz, and
pre-filtered with three separate configurations to provide 3 input
channels to the model. The first channel was a band-pass filtered
Ear-ECG between 1 Hz and 45 Hz which aimed to reduce higher
frequency noise whilst preserving the crucial information in the
ECG. The second channel was a band-pass filtered Ear-ECG
between 1 and 5 Hz, which removed high frequency noise and the
QRS complex from the ECG, but retained information on the P
and T waves. The third channel was a high-pass filtered Ear-ECG
filtered with a cut-off frequency of 1 Hz. This preserved all of
the higher frequency detail present in the ECG, but also retained
high frequency noise such as electrical interference at 50 Hz. To
segment the data, a sliding window with a length of two seconds
(500 samples) was implemented with a shift of 0.4 seconds (100
samples). This resulted in a total of 26,564 segments across all
subjects. Two seconds was chosen as the segment length so that
inputs would always have an ECG waveform, and usually have
upwards of two ECG waveforms.

B. Matched Filter Theory

Matched filtering is a signal processing technique that origi-
nated in radar applications [25]. It involves performing a cross
correlation between the noisy signal x(n), which contains a
signal of interest and noise, and the known signal pattern h(k),
resulting in the output signal y(n) as follows:

y(n) =
∑

k

h(k)x(n+ k) (1)

When the defined pattern overlaps with itself in the noisy signal,
there is a “match” which results in a peak in the output. The
matched filter therefore maximises the signal to noise ratio
of the output. In our case, when searching for peaks in noisy
ECG, the matched filter performs the cross correlation between
a template ECG and the noisy Ear-ECG.

A previous implementation of the matched filter in noisy
R-peak detection is a combination of matched filtering and
the Hilbert transform (MF-HT) introduced by Chanwimalueang
et al. [21]. This algorithm requires a user to manually select the
QRS complex in the data, which is then used as the matched
filter template. The data is windowed for a duration after the
current R-peak, with the start at 20% of the mean RR interval and
the end at 150%. This window is then matched filtered, before
the Hilbert transform is applied. The magnitude of the Hilbert
transform gives the positive envelope, on which peak detection
is performed. Potential peaks are windowed to the same length
of the original QRS template, and cross correlation is performed
with the original QRS template to determine the best match. If
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Fig. 2. Overview of the proposed Deep Matched Filter (Deep-MF) architecture. The three input channels to the model (top left, blue), including
Ear-ECG band-pass filtered between 1 and 45 Hz, Ear-ECG band-pass filtered between 1 and 5 Hz, and Ear-ECG high-pass filtered with a cut-off
frequency of 1 Hz. These channels serve as inputs to an encoder module which serves as a matched filter (middle, blue). The encoder, constructed
of 1D convolutional layers, consists of a matched filter layer with kernels of length 200 (0.8 seconds) which serve to detect ECG patterns in the
input, and three subsequent “refinement” layers with kernels of length 50, to determine which matches are true. A subsection of the weights of the
matched filter layer are initialised with a shifted ECG template (top right, grey). The encoder is accompanied by a decoder (middle, red), consisting
of 1D transpose convolutional layers, which upsample the output of the encoder into an output which resembles an ECG waveform (bottom left,
red). The decoder is essential for the training of the encoder. The final module is the R-peak classifier (right, purple), which takes the output of the
encoder and uses it to predict the position of the R-peak. The R-peak classifier consists of a single 1D convolution layer, and a linear layer.

the newly determined RR interval of the best match is outside
the desired range, the RR interval is calculated for all potential
peaks and the peak with the closest RR interval to the previous
one is selected. If it is within the desired range, then the best
match is selected as the R-peak. This process then repeats for
all subsequent R-peaks.

C. Deep Matched Filter Model

The deep matched filter architecture, developed in Py-
Torch [26] and shown in Fig. 2, consists of two main parts.
Firstly, an encoder-decoder module, which aims to extract shared
information between the input and a training reference by con-
densing the information from the input that is most predictive
of the output into a latent representation [27]. In this case, the
encoder-decoder was trained with arm-ECG as a reference and
aims to encode the shared information between the Ear-ECG and
the arm-ECG, before decoding this information into a waveform
resembling that of the arm-ECG. The encoder, whilst similar
in organisation to that of a denoiser, behaved as a matched
filter by simply encoding the R-peak locations from the original
Ear-ECG and no corresponding morphological information. It
then used this encoded R-peak location and generated a learned
generic ECG pattern in the same position. The decoder was thus
bypassed, with a simple CNN based classifier which used the
latent representation to predict the R-peak location.

The encoder, highlighted in blue in Fig. 2, consisted of 4
one-dimensional convolutional layers. In the first layer, there
were 6 kernels associated with each input channel, to form 6
output channels. In all subsequent layers there were 6 kernels

associated with each of the 6 new inputs. In the first layer, a
kernel size of 200 was chosen, corresponding to 0.8 seconds
and representing a duration slightly longer than that of a full
ECG segment for its use as a matched filter template. Moreover,
the 6 kernels corresponding to the first band-pass filtered input
channel (1 to 45 Hz) were initialised with a shifted ECG template
which is highlighted in grey in Fig. 2. The subsequent layers in
the encoder had a kernel size of 50, chosen to encompass the
width of the resulting “match” peak from convolution between
the input and the input layer. These layers served as refinement
layers for the output of the first layer, in essence helping the
model to increase the precision of the matched filter by deciding
which matches were valid and which matches were not. The first
3 layers had a ReLU activation function and a dropout of 50%,
and the fourth layer had a Sigmoid activation function and a
dropout of 50%. The Sigmoid activation function was important
for ensuring stability of the model during training, due to the
bounded output property.

The decoder, highlighted in red in Fig. 2, contained 4 trans-
pose convolutional layers which mirrored the corresponding
one-dimensional convolutional layers of the encoder. In contrast
to the encoder layers, there was no dropout applied and only
a single Sigmoid activation function was applied between the
first and second decoder layers. Moreover, there was a single
output corresponding to a 2 s ECG trace. The encoder-decoder
structure was trained to minimise mean squared error between
the output and the reference ECG waveform. Importantly how-
ever, due to the encoder operating as a matched filter and the
fact that there were only slight differences in the morphology
of ECG waveform across subjects, the model minimised error
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by detecting only the location of the ECG in the input, and
upsampling this into a generic ECG waveform. Despite this,
the training paradigm of using a decoder to replicate a full ECG
waveform was necessary, as when the same structure was trained
to replicate just the R-peaks it often failed to converge.

Given that the latent representation contained information on
location of the ECG in the input, a simple classifier, highlighted
in purple in Fig. 2, was then trained to take in the latent variables
and output R-peak locations. This classifier consisted of a single
layer 1D convolution, followed by a Sigmoid activation function
and flattening, before finally being passed to a linear layer. For
the training of this second model, the latent variables were
extracted from the training inputs which were passed through
the trained encoder. These latent variables were then used as
inputs to the R-peak classifier which was trained against the
corresponding R-peak locations from the reference ECG. The
R-peak locations were calculated from the ECG reference using
the MATLAB (ver. 2022b) function findpeaks, and both the
location of the R-peak and the two neighbouring values were
assigned a value of 1. Extending the window of the R-peak
location from 1 to 3 in the training reference gave the model
slightly more lenience in the shift of a peak, as without this
step the model had a tendency to suppress peaks. The output
of the classifier was trained to minimise mean squared error
(MSE) against the corresponding binary R-peak array. Finally,
averaging was performed on the 2-second output of the deep
matched-filter, with a shift of 0.4 seconds. In a real-world setting
it would be practical to implement the model with a rolling
output, rather than waiting for each new 2-second window to
pass. Moreover, if the ECG in the input was at the boundaries
of the model and not a full waveform it would be cropped with
respect to the matched filter (an issue that padding would not
solve) and thus it would be more difficult to detect. This issue is
circumvented by using a rolling window by ensuring that every
ECG waveform in the input is at some point close to the center
of the input.

The encoder-decoder model was trained for 10 epochs and the
R-peak classifier was trained for 15 epochs, with both numbers
of epochs chosen purposely as to limit over-fitting. Both were
trained with a batch size of 10 segments, and both the encoder-
decoder and the R-peak classifier models were trained using
leave-one-subject-out cross validation.

The path that the input signal takes through the combined
model is highlighted in Fig. 3. Observe that in this test example,
where multiple peaks are present in the input with only true
R-peak, the output of the ECG template “matched filtering” layer
results in 3 strong peaks. These peaks are then sifted through by
the subsequent decoder layers to produce a correct peak in the
latent representation - a process we refer to as “refinement”.
This peak in the latent representation is then used by the R-
peak classifier to determine the true R-peak location. It should
be noted that in examples with a higher heart rate, the latent
representation consists of multiple correct peaks.

D. Model Evaluation

The deep matched filter (Deep-MF) was evaluated against
two state of the art models, namely a standard matched fil-
ter (MF) and the matched filter Hilbert transform algorithm

Fig. 3. Signal pathway through the proposed Deep Matched Filter
(Deep-MF) for an example test input Ear-ECG trace (blue). The input
first passes through the matched filter layer, resulting in the Layer 1 Out-
put, with 3 potential matches. This initial output is then passed through
the subsequent “refinement” layers, until a singular peak is present in the
latent representation. In the matched filter and refinement stages, the
true peak is highlighted with a shaded red box. This latent space is then
passed through the R-peak classification phase, resulting in predicted
R-peak location (purple). For the purposes of comparison, the ground
truth ECG is displayed below in black.

(MF-HT) [21]. Both MF and MF-HT were implemented using
the input channel that was band-pass filtered between 1 Hz
and 45 Hz. For the outputs of the Deep-MF and MF, R-peaks
were determined using the MATLAB function findpeaks, with
a maximum peak width of 25 samples and a minimum peak
distance of 12 samples. The determined R-peaks were then
compared to the true R-peaks, which were also calculated using
findpeaks on the reference ECG signal. If the predicted peak was
within 40 ms of the true R-peak, it was considered a match. This
condition was also applied to the output of the MF-HT.

The proposed Deep-MF and the MF were both evaluated
in terms of R-peak recall (the proportion of the R-peaks in
the reference signal that were correctly identified) and R-peak
precision (the proportion of predicted R-peaks which were true
R-peaks). An area under the curve (AUC) value corresponding
to a precision-recall curve was calculated for both the proposed
Deep-MF and the standard MF, by varying the minimum peak
height threshold of the findpeaks function. This precision-recall
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Fig. 4. Test results for the proposed Deep Matched Filter for R-peak detection in noisy Ear-ECG. (a) An example of Ear-ECG with a poor signal to
noise ratio (blue) and the corresponding output R-peak locations of the Deep-MF (purple). Below is the ground truth Arm-ECG (black) with predicted
R-peak locations overlaid in purple. Note that in the input there are several peaks which a stronger than the true R-peaks, particularly between
79 and 80 seconds. The Deep-MF correctly rejects these peaks and predicts the true R-peaks in the output. (b) Boxplots of R-peak Recall and
Precision, across all subjects as a result of leave one subject out cross validation. Overlaid in each case is a swarm plot, showing the performance
metrics for each subject individually. The results of the proposed Deep-MF filter (purple) are compared to the Matched Filter Hilbert Transform
(MF-HT) (red) and the standard Matched-Filter (blue). In terms of R-peak recall, the percentage of peaks in the ground truth correctly identified by
the model, the proposed Deep-MF achieves a median of 94.9%, compared with the MF-HT and MF where the respective median recalls are 83.4%
and 62.3%. In terms of precision, the percentage of the peaks predicted by the model that are correct, the proposed Deep-MF achieves a median
of 91.2%, compared with the MF-HT and MF which achieved the respective median precisions of 79.5% and 67%.

curve was generated with the median precision and recall values
across all subjects. For the MF-HT algorithm, it was not possible
to vary sensitivity in this way, and thus the implementation was
compared Deep-MF and the standard MF with fixed threshold
parameters that produced a good balance of recall and precision,
with values of 0.11 in the case of Deep-MF and 0.90 in the case
of MF. Note that the large difference in threshold used between
the Deep-MF and the standard MF stemmed from the fact that
the outputs of the Deep-MF were scaled and were thus lower in
amplitude than the standard MF. The Deep-MF, standard MF and
MF-HT were all compared again through performance in recall
and precision, in the form of boxplots of these values across all
36 subjects.

For a more complete overview of model performance, preci-
sion and recall were further assessed against the signal quality of
the model inputs. Signal quality was determined as the Pearson
correlation coefficient between the 1–45 Hz bandpass filtered
Ear-ECG input and the reference ECG signal. The distribution
of signal quality across all 36 subjects was analysed, as well as
the correlation between signal quality and model performance
metrics for each algorithm.

The effects of initialisation with an ECG template (shown in
grey in Fig. 2) were also evaluated and contrasted against random
initialisation, both in terms of performance and interpretability.
To evaluate the performance impact of initialisation, the mean
absolute test error of the encoder-decoder model was calculated
at regular intervals during training for both random initialisation
and ECG template initialisation. Similarly, AUC values for R-
peak recall-precision curves were calculated for both random
initialisation and ECG template initialisation. For the purposes

of interpretability, the converged kernel weights after training
with ECG template initialisation were examined visually and
compared to the initialised values, with a focus on the P, Q, R,
S, and T portions of the ECG to determine which aspects of the
ECG were valuable to the model for detecting ECG in the input.

III. RESULTS AND DISCUSSION

The deep matched filter achieved a median R-peak detection
recall of 94.9% in the Ear-ECG of unseen subjects, with an
interquartile range of 60.1% to 99.3%. The Deep-MF had a
corresponding median precision of 91.2% with an interquartile
range of 68.6% to 98.2%. The high recall and precision of the
Deep-MF is reinforced by an example Deep-MF model output
shown in Fig. 4(a), alongside the ground truth ECG and the
input Ear-ECG. It can be observed in this example that even
in a scenario with a poor signal-to-noise ratio, whereby it is
difficult to visually identify which peaks in the input belong
to ECG, the Deep-MF correctly identified the correct peaks
and excluded the incorrect peaks. On the same subject pool,
the MF-HT achieves a median recall of 83.4% with an IQR
of 62.3% to 97.2%. The MF-HT had a corresponding median
precision of 79.5% (IQR 28.6% to 96.8%). These results are
comparable to the original implementation of MF-HT on noisy
ECG by Chanwimalueang et al. [21], in which the algorithm
achieved a recall of 83.1% and a precision of 86.8%. The
increase in precision achieved by the deep-MF over MF-HT was
statistically significant when analysed through one-way ANOVA
(P. = 0.03) but the improvements in recall were not.
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The results of the Deep-MF and MF-HT were also compared
with the standard MF which had a median recall of 62.3%
(IQR 27.3% to 85.9%) and a median precision of 67.1% (IQR
of 47.9% to 84.5). The improvement in performance of the
deep-MF over the standard MF was statically significant both
in terms of recall (P. = 0.003) and precision (P. = 0.005). The
full results for the comparison of recall and precision between
the Deep-MF, MF-HT and standard MF are shown in boxplots
in Fig. 4(b) with the Deep-MF plotted in purple, the MF-HT in
red, and the standard MF in blue. Whilst the overall distribution
of recall was comparable between the Deep-MF and MF-HT,
with both models having a similar interquartile range, Deep-MF
performed far better in terms of precision. This is likely due
to the advantages of the Deep-MF related to having multiple
refinement layers, in which false peaks could be discarded. It is
important to note that the MF-HT relies on manual input to select
a matched filter template from the input signal, which explains
the improvements in recall over the standard-MF in which a fixed
template was used across all subjects. Moreover, the MF-HT
also has further conditions on determining true R-peaks, based
on a balance between the correlation between the template and
the input and a deviation from the mean RR interval. These
conditions explain why the median precision of the MF-HT was
also higher than for the standard MF.

The interquartile ranges of both recall and precision were
large for all three algorithms, and this was primarily a function
of the large variability in signal quality across subjects. The
signal quality (determined as the Pearson correlation between
the input Ear-ECG and reference ECG) had a median correlation
of 0.39, with an interquartile range of 0.24 to 0.49. For reference
of what these values mean in practice, the Ear-ECG of the
subject displayed in Fig. 4(a) had a signal quality of 0.40.
Indeed, this highly variable signal quality was either moderately,
strongly or very strongly correlated with each performance
metric for each type of matched filter algorithm employed.
For the Deep-MF, there was a correlation of 0.68 between
signal quality and recall (P. = 6× 10−6), and a correlation
of 0.63 between signal quality and precision (P. = 4× 10−5).
For MFHT, the correlations between performance and signal
quality were 0.60 (P. = 1× 10−4) and 0.49 (P. = 2× 10−3)
for recall and precision, respectively. For the standard MF, the
signal quality correlations were 0.82 (P. = 1× 10−9) and 0.58
(P. = 2× 10−4) for recall and precision, respectively. More-
over, when only the performance on the worst quarter of signal
qualities was considered, there was no statistically significant
difference in performance between different algorithms. This is
in contrast to the statistically significant improvement in per-
formance provided by the Deep-MF across all subjects. In this
work, gel was used to improve signal quality, which would not
be utilised in consumer grade devices. The lack of improvement
in performance on poor data indicates that for the Ear-ECG to
be reliable in real world devices, advancements must be made in
the sensor hardware and thus the consistency of the acquired
in-ear ECG signals. Recent promising advancements in dry
electrode technology exist which have the potential to overcome
this hurdle [28], [29].

Fig. 5. Precision-recall curves for R-peak detection, for the proposed
Deep Matched Filter (Deep-MF) and the standard matched filter (MF).
The Deep-MF (purple) achieves an area under the curve (AUC) value of
0.97, compared with the MF (blue) which achieves an AUC of 0.64.

For both the Deep-MF and standard MF, recall and precision
were evaluated across the full range of peak sensitivity threshold
values to produce precision-recall curves taken from the median
results across all subjects, as shown in Fig. 5. The Deep-MF
achieved an area under the curve value of 0.97, compared to the
standard MF which achieves an AUC of 0.64. Observe that preci-
sion values never drop below 0.1 due to the two fixed conditions
of this findpeaks implementation, namely the maximum peak
width and a minimum peak distance, which limited precision
from dropping below this value.

It is important to note that the Deep-MF model is more
complex than the MF-HT and the standard MF, which provides
a more significant barrier to practical implementation. How-
ever, on the landscape of deep learning implementations, the
Deep-MF is a relatively small model, with an implementation
consisting of only 6 total layers, of which 5 are convolutional
layers. Moreover, the total number of convolutional kernels is
only 162, making the Deep-MF very computationally cheap to
implement. This small architecture, grounded in the matched fil-
ter principle and combined with the fact that the overall structure
of ECG shares many features across participants, allowed us to
achieve high accuracy with a relatively small subject pool. As
is the case with the standard MF and MF-HT, the Deep-MF can
operate in quasi real-time, with a rolling window of the previous
2 seconds of input data. Furthermore, the increase in model
complexity of the Deep-MF is justified by vast improvements
in performance, with a median increase in recall of 11.6% and
a median increase in precision of 11.8% when compared to the
MF-HT.

IV. INTERPRETABILITY

A major barrier to the more widespread adoption of deep
learning techniques in digital health is the notion that the models
themselves are black boxes that offer no interpretability to
explain the predictions they make. In this work, we employ the
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Fig. 6. Effects on model performance of the random initialisation of
kernel weights (black), against partial initialisation of the input “Matched
Filter” layer with an electrocardiogram template (purple). (a) The Log10
of the test error convergence of the encoder-decoder module during the
training process, with a dotted line representing the mean test error of
the last half of the final training epoch. (b) Precision-Recall curves for
R-peak detection of the Deep-MF, shown to have an area under the
curve (AUC) value of 0.967 with random initialisation and an AUC value
of 0.973 after initialisation with an ECG template.

concept developed by Stanković et al. [23] to show that this
particular model for R-peak detection is fully interpretable as
a multi-layer matched filter, a tool for detecting similarity in
patterns between an input signal and a template of interest. A
key aspect of this argument is the partial initialisation of the
input layer of the Deep-MF to the pattern which it is trying
to detect [24], namely the electrocardiogram. For rigour, it is
important to also examine the same kernels after the training
process, as if the network was to completely discard the ECG
template then it could be assumed that the model did not find
the information useful for minimisation of error and thus was
not searching for ECG “matches” in the input signal.

In terms of model accuracy, the effects of partial initialisation
of the input layer of the Deep-MF with the same ECG template
as used in the standard matched filter were small. It is highlighted
in Fig. 6(a) that initialisation with an ECG template provided a
minor improvement in the mean squared error of the decoder
output, and in Fig. 6(b) it is shown that this corresponded to a
slight increase in precision-recall AUC from 0.967 to 0.973.

Fig. 7. Effects of training on kernels initialised with or without an
electrocardiogram template. (a) The dashed trace in black represents
the initialised ECG kernel weights before the training process, and the
purple trace represents the kernel weights after the training process.
Labelling highlights that across kernels, different aspects of the ECG
are enhanced during the training process. In the 1st kernel (top), there
is an enhancement of the P wave and of the Q portion of the QRS
complex. In the 5th kernel there is an amplification of the S portion of
the QRS complex. In all ECG initialised kernels there is an exaggeration
of the R-peak that was provided by the ECG template. (b) The dashed
trace in black represents the randomly initialised weights before the
training process, and the blue trace represents the kernel weights after
the training process.

Note that the precision-recall curves plotted in Fig. 6(b) are
zoomed in the recall axis to exaggerate the difference between
the random initialisation and the template initialisation. Whilst
these improvements in performance are marginal, it does suggest
that initialising the Deep-MF with an ECG provided the model
with useful information that it did not otherwise learn from the
training process.

When examining the effect of training on the initialised
weights, as shown with two examples in Fig. 7(a), it is clear
that the network retains aspects of the ECG templates as it
deems them useful in minimising error. Notably, in the all kernels
initialised with an ECG template, the R-peak information from
the template was retained by the network and exploited with an
increase in the weights at this location. Moreover, the network
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goes further than the original template ECG and exaggerates
aspects such as the P wave, and the Q and S parts of the
QRS complex [30], [31] during the training process, showing
that these aspects of the ECG are useful in distinguishing true
R-peaks from other peaks in the input signal. This can be seen
in Fig. 7(a) with the kernel 1 demonstrating an amplification in
weights around the P wave and Q, and kernel 5 demonstrating an
exaggeration of the R and S components of the ECG. It is further
shown, through the convergence of the randomly initialised
weights in Fig. 7(b), that the model may also converge to an
QRS matched filter on its own (kernel 5) but that this result is
not necessarily guaranteed (kernel 2) without initialisation to an
ECG template.

V. CONCLUSION

We have introduced a novel Deep Matched Filter (Deep-MF)
framework for the detection of R-peaks in wearable-ECG. The
proposed Deep-MF has been evaluated on the Ear-ECG of 36
subjects, and has shown a marked improvement over existing
matched filter based algorithms, both in terms of recall and
precision. In parallel with demonstrating the proficiency of the
Deep-MF at R-peak detection in scenarios with poor signal to
noise ratio, it has been illustrated that this encoder-based model
behaves precisely as a learned matched filter. It serves to detect
ECG segments in the input, followed by several refinement
layers which distinguish the true ECG matches from the false
matches. This has been reinforced through partial initialisation
of the model with an ECG template, whereby through the
training process the model enhances physically relevant aspects
of the ECG. Owing to its interpretability, the proposed Deep
Matched Filter has been shown to greatly improve the practical
utility of the Ear-ECG signal, whilst being transparent in its
operation. It is our hope that physically grounded models such
as the Deep Matched Filter may help to accelerate wide scale
adoption of interpretable artificial intelligence in healthcare.
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